Zufallsgröße

Aus eLearning - Methoden der Psychologie - TU Dresden
Zur Navigation springen Zur Suche springen

Zufallsgrößen (auch Zufallsvariablen) ordnen jedem möglichen Ergebnis einer Zufallssituation eine Zahl zu oder anders: der Wert einer Zufallsgröße hängt vom Zufall ab, z.B. die Augensumme mehrerer geworfener Würfel.

Eigenschaften

  • Erwartungswert: ein nach der Wahrscheinlicheit der Werte gewichtetes Mittel
  • Varianz: Streuung von Werten um einen Mittel- oder Erwartungswert, bzw. die durchschnittliche quadratische Abweichung von Werten einer Zufallsgröße von ihrem Erwartungswert.
    • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Var(X) = E \cdot ((X−E(X))^{2})}
  • Standardabweichung: Ein Streuungsmaß, das die durchschnittliche Abweichung der Werte einer Zufallsgröße von ihrem Erwartungswert angibt, also die Wurzel der Varianz

Rechenregeln

Verteilungen