Aufgaben - Synthetische Modelle

Aus eLearning - Methoden der Psychologie - TU Dresden
Zur Navigation springen Zur Suche springen

Der folgenden Bereich enthält Fragen zu synthetischen und explanativen Modellen. Alle Fragen sind Multiple Choice Fragen, d.h. es können immer mehrere Antworten richtig sein. Klicken Sie zur Beantwortung einer Frage die korrekten Antwortmöglichkeiten an. Um Ihre Ergebnisse auszuwerten, wählen Sie bitte den Button "Speichern" am unteren Ende der Seite.

Für jede vollständig richtig beantwortete Frage erhalten Sie einen Punkt. Für falsche beantwortete Fragen werden Ihnen keine Punkte abgezogen. Sie können diese Einstellung jedoch beliebig verändern. Ihre Gesamtpunktzahl finden Sie am unteren Seitenende.


  

1 Welche Aussagen zum Verarbeitungszyklus in Soar sind richtig?

Bei jeder Bewältigung eines Unterziels wird eine neue Regel erstellt.
Wenn der Arbeitsspeicher bestimmte Bedingungen von Produktionsregeln erfüllt, schlagen diese die Anwendung bestimmter Operatoren vor.
Wenn kein beim Evaluationsprozess kein bester Operator gefunden werden kann, kehrt das System in den Ausgangszustand zurück.

2 Welche Aussagen zur Funktionsweise von kognitiven Architekturen sind richtig?

Man kann damit Daten wie Reaktionslatenzen und Genauigkeit simulieren.
Kognitive Architekturen funktionieren ähnlich wie eine Programmiersprache.
Die Modelle innerhalb von kognitiven Architekturen sind nicht generalisierbar.
Anwender können ihre Experimente in Form von Programmen in die Architekturen einbauen und testen.

3 Über welche dieser Fähigkeiten verfügen neuronale Netze (sowohl künstliche als auch biologische)?

Generalisierung von Bekanntem auf Unbekanntes
Toleranz gegenüber Fehlern im Input
lokale, ortsspezifische Speicherung von Mustern
Lernen und Selbstorganisation

4 Wodurch wird die Aktivierung der Knoten in dynamischen Feldern beeinflusst?

Aktivierung der Nachbarknoten
Ruhepotential
externer Input
Aktivierung des betreffenden Knotens selbst

5 Welche Aussagen zu den Funktionsbausteinen von Soar sind richtig?

Produktionsregeln können Operatoren vorschlagen und bewerten.
Der Regelspeicher greift auf das im Arbeitsspeicher kodierte prozedurale und Faktenwissen zurück.
„Chunking“ bezeichnet die Gruppierung von Operatoren in eine funktionale Kategorie.

6 Welche der folgenden Aussagen zur Agentenbasierten Modellierung treffen zu?

Agentenbasierte Modellierung wird zur Untersuchung komplexer Systeme verwendet.
Agenten bringen durch Interaktion miteinander ein bestimmtes Systemverhalten hervor.
Agentenbasierte Modellierung nutzt vieler kleine autonome Einheiten, welche keine Entscheidungs- oder Handlungsmöglichkeiten besitzen.
Agentenbasierte Modellierung kann keine Erklärungsansätze für soziale Phänomene wie z.B. Massenpanik bieten.

7 Wovon ist die Gewichtsveränderung bei der Deltaregel abhängig?

Aktivierung des Inputknotens
Belohnungssignal
Differenz zwischen gewünschtem und beobachtetem Output
Lernrate

8 Welche dieser Lernregeln gehören zum überwachten Lernen?

Hebb’sche Lernregel
Competitive Learning
Delta-Regel
Backpropagation-Regel

9 Was versteht man unter Populationsvektorkodierung bei dynamischen neuronalen Feldern?

Jeder Knoten hat eine „präferierte“ Eigenschaftsausprägung.
Ein Knoten kodiert eine Population von Eigenschaften.
Jeder Knoten hat eine „präferierte“ Eigenschaftsdimension.
Eine Population von Knoten kodiert gemeinsam eine Eigenschaftsdimension.

10 Welche der folgenden Netztypen besitzen keine Rückkopplungen?

Attraktorennetze
Perzeptron
Dynamische neuronale Felder
Kohonen-Netze

11 Synthetische und Explanative Modelle werden zur Modellierung komplexer Prozesse verwendet. Der Mensch stellt ein überaus komplexes System dar, dessen Verhalten mittels gesonderter Modelle aus verschiedenen Perspektiven analysiert werden kann. Welche Aussagen über diese verschiedenen Betrachtungsebenen sind zutreffend?

Individuumsorientierte Modelle untersuchen Inter-Agenten-Prozesse.
Individuumsorientierte Modelle beschäftigen sich mit der Entstehung menschlichen Verhaltens durch das Zusammenspiel interner Prozesse.
Sozialorientierte Modelle untersuchen Intra-Agenten-Prozesse.
Sozialorientierte Modelle beschäftigen sich mit der Entstehung menschlichen Verhaltens durch das Zusammenspiel von Personen.

12 Welche der folgenden Merkmale besitzen Synthetische und Explanative Modelle?

Modelle dienen der Generalisierung und Theoriebildung
Modelle überraschen selten, da ihre Komplexität durch die Modellierung angemessen reduziert werden muss
Modelle verhalten sich, d.h. sie repräsentieren nicht nur abstrakte Zahlenketten, sondern können in eine Verbindung zur (virtuellen) Außenwelt gestellt werden
Entwicklung erfolgt durch Abstraktion über Daten bestimmter Fälle oder prinzipienorientiert ohne Daten

13 Welche Aussagen über Attraktorennetze sind zutreffend?

Attraktoren sind stabile Werte, zu denen die Gewichte immer wieder zurückkehren.
Die Knoten einer Schicht besitzen laterale Rückkopplungen.
Durch das Lernen bilden sich stabile Koaktivierungsmuster von Knoten.
Das Lernen erfolgt nach dem „Winner-takes-all“-Prinzip, sodass jeweils nur die Gewichte des am stärksten aktiven Knotens aktualisiert werden.

14 Welche Aussagen zum Konzept der emergenten (oder auch aufsteigenden) Level, welches bei der Modellierung zu beachten ist, treffen zu?

Elemente eines übergeordneten Levels entstehen durch Interaktionen von Elementen untergeordneter Level.
Zusammensetzung der höheren Level aus den Objekten unterliegender Level ändert sich mit der Zeit.
Sowohl übergeordnete als auch untergeordnete Level folgen denselben Regeln.
Elemente eines übergeordneten Levels stellen die reine Ansammlung von Objekten untergeordneter Level dar.

15 Welcher logische Operator lässt sich nicht mit einem einschichtigen Perzeptron umsetzen?

inklusives Oder
Nicht
exklusives Oder
Und

16 Welche Probleme und Schwierigkeiten treten beim Reinforcement-Lernen auf?

Der Lernvorgang findet gänzlich ungesteuert statt.
Das Lernprinzip kommt in der Realität nicht vor.
Belohnungen treten oft zeitversetzt zu Handlungen auf.
Reinforcement-Lernen dauert oft länger als überwachtes Lernen.

17 Welche Art des Lernens lässt sich mit Hebb’schem Lernen erklären?

Habituation
Klassisches Konditionieren
Instruktionslernen
Operantes Konditionieren

18 Die kognitive Architektur ACT-R besteht aus folgenden Modulen:

Deklaratives Modul
Manuelles Modul
Prozedurales Modul
Ziel Modul
Introspektives Modul

19 Welche Lernregel ähnelt der klassischen Perzeptron-Lernregel am stärksten?

Hebb’sches Lernen
Competitive Learning
Backpropagation
Deltaregel

20 Welches dieser Konzepte ist kein zentraler Baustein dynamischer neuronaler Felder?

Entwicklung von Aktivierung über die Zeit
Lernen durch Änderung des Interaktionskernels
laterale Inhibition
kontinuierliche topologische Repräsentationen

21 Was hat beim Hebb’schen Lernen keinen Einfluss auf die Gewichtsveränderung?

Fehlerterm
Aktivierung des Inputknotens
Lernrate
Aktivierung des Outputknotens

22 Um welche Form des Lernens handelt es sich, wenn ein Kind versucht, das richtige Puzzleteil zu finden, indem es verschiedene Teile ausprobiert, um zu sehen, ob sie passen?

supervised learning
error-driven learning
unsupervised learning
reinforcement learning

23 Was versteht man unter stigmergischen Interaktionen?

direkte Form der Interaktion, bei welcher Agenten die Position eines anderen Agenten verändern
indirekte Form der Interaktion, bei welcher Agenten ihre lokale Umwelt verändern
indirekte Form der Interaktion, bei welcher Agenten ihre Position verändern
direkte Form der Interaktion, bei welcher Agenten die Eigenschaft eines anderen Agenten verändern

24 Was beeinflusst die Gewichtsveränderung bei Nutzung der Backpropagation-Regel?

Lernrate
Schwellwert
Beitrag eines Gewichts zum Gesamtfehler
statistische Regularitäten im Inputmuster

25 Was versteht man unter impliziter Rekonstruktion des Inputs als Trainingssignal?

Der Lerner generiert eine implizite Erwartung des korrekten Outputs als Kopie des aktuellen Inputs.
Der Lerner generiert eine implizite Erwartung über die Konsequenz einer motorischen Aktion.
Der Lerner generiert eine implizite Erwartung des korrekten Outputs als Assoziation zum aktuellen Input.
Ein externer „Lehrer“ gibt einen Output vor.

26 Welche Aussagen zum zentralen Produktionssystem der kognitiven Architektur ACT-R sind richtig?

Reihenfolge der Verarbeitungsschritte: Konflikterkennung, Mustererkennung und Ausführung der geplanten Aktionen.
Produktionsregeln aktualisieren u.a. die Zwischenspeicher für deren weitere Nutzung im nächsten Zyklus.
Das Produktionssystem kann nur auf eine begrenzte Menge an Informationen (Chunks) zurückgreifen.
Über Produktionsregeln werden diese Informationen von den Modulen an das Produktionssystem weitergeleitet.

27 Welche Verbindungsarten existieren im abgebildeten Netz?

Direktindirekt.png

Feed-forward-Verbindungen
laterale Rückkopplungen
direkte Rückkopplungen
indirekte Rückkopplungen

28 Was versteht man bei künstlichen neuronalen Netzen unter dem Netzinput?

die Aktivität eines einzelnen Inputknotens
das Aktivitätsmuster der Inputschicht
den aufsummierten und gewichteten Input, den ein Knoten empfängt
die Aktivierung, die ein Knoten als Input für den nächsten Knoten weitergibt

29 Welches Phänomen versucht das Konzept emergenter Level zu erklären?

einzelne Teile oder Individuen einer Gesamtheit können ein anderes Verhalten als das Gesamtsystem zeigen
das Verhalten einzelner Teile oder Individuen einer Gesamtheit gleicht sich innerhalb sehr kurzer Zeit dem Verhalten des Gesamtsystems an
das Verhalten einzelner Teile oder Individuen einer Gesamtheit gleicht sich innerhalb einer bestimmten Zeitspanne dem Gesamtsystem an, welche von der Anzahl der Elemente des Gesamtsystems abhängig ist
das Verhalten einzelner Teile oder Individuen einer Gesamtheit gleicht sich innerhalb einer bestimmten Zeitspanne dem Gesamtsystem an, welche vom Ausmaß der Bewegung der einzelnen Individuen abhängig ist

30 Welche Aussagen beschreiben Reinforcement-Lernen in künstlichen neuronalen Netzen?

Das Netz erhält eine Information über die Richtigkeit seines Outputs.
Das Lernen wird durch Vorgabe eines korrekten Outputs gesteuert.
Es wird kein korrekter Output vorgegeben.
Das Grundprinzip des Reinforcement-Lernens entspricht dem operanten Konditionieren.

31 Wo liegen Beschränkungen der Deltaregel?

Das Kennen der exakten Outputaktivierungen ist nicht biologisch plausibel.
Sie ist sehr rechenaufwändig.
Sie eignet sich nicht für mehrschichtige Netze.
Sie berücksichtigt den Inputknoten nicht.

32 Was passiert in der Trainingsphase künstlicher neuronaler Netze?

Inputmuster werden präsentiert.
Eine Lernregel wird angewendet.
Gewichte verändern sich.
Die Generalisierungsfähigkeit des Netzwerks wird überprüft.

33 Aus komplexen Systemen resultieren komplexe Verhaltensmuster. Welche Aussagen über zentrale Themen der Agentenbasierten Modellierung treffen zu?

Agentenbasierte Modelle erlauben keine Beschreibung komplexer und räumlicher und zeitlicher Muster.
Agentenbasierte Modelle erlauben die Modellierung des Prozesses sozialer Ansteckung durch Schwellenwertmodelle.
Agentenbasierte Modelle erlauben die Modellierung des Prozesses sozialer Kooperation.
Agentenbasierte Modelle erlauben die Modellierung chemischer oder biologischer Interaktionen von Organismen oder einzelnen Zellen.

34 ACT-R (Adaptive Control of Thought – Rational) ermöglicht…

die selbstständige Implementierung von eigenen Modellen durch eine Standalone-Anwendung.
rationale Gedankenkontrolle bei Menschen durchzuführen.
die Integration zentraler Grundmechanismen menschlicher Kognition in ein Computerprogramm.
die Überprüfung von Theorien durch den Vergleich simulierter und empirischer Verhaltensdaten.

35 Welche Aussagen über Kontextknoten in einfachen rekurrenten Netzen sind zutreffend?

Sie können die Aktivierung einer Schicht für einen Verarbeitungsschritt zwischenspeichern.
Sie sind immer mit der Hiddenschicht verbunden.
Sie ermöglichen das Lernen zeitlicher Sequenzen.
Sie sind stets über unveränderliche Gewichte in beide Richtungen mit dem Rest des Netzes verbunden.

36 Welche Aussagen über Agenten, deren Verhalten im Rahmen eines Agentenmodells beschrieben wird, treffen zu?

handeln nach eigenen Zielen
handeln aktiv und reaktiv
sind in eine unbegrenzte 2D oder 3D Umgebung eingebettet
besitzen nur eine begrenzte Informationsmenge und Rationalität

37 Was ist die Grundidee der Backpropagation-Regel?

Neuronale Netze lernen unüberwacht durch Selbstorganisation.
In mehrschichtigen Netzen wird für jede Schicht im Vorhinein ein korrekter Output definiert, um überwachtes Lernen zu ermöglichen.
Überwachtes Lernen in mehrschichtigen Netzen wird realisiert, indem Fehlerterme von der Outputschicht wieder zurückgesendet werden.
Belohnungsinformationen werden schichtweise von der Outputschicht zurückgesendet, um Reinforcement-Lernen zu ermöglichen.

38 Agentenmodelle werden anhand ihrer Abstraktionsniveaus in unterschiedliche Gruppen eingeteilt. Welche Aussagen über diese Gliederung und die verschiedenen Gruppen von Modellen treffen zu?

Man unterscheidet idealisierte und detailgetreue Modelle.
Man unterscheidet idealisierte und reduzierte Modelle.
Ein Nachteil idealisierter Modelle ist, dass sie aufgrund von unzureichend eingeschränkten freien Parametern zu viele mögliche Outcomes vorhersagen können.
Idealisierte Modelle versuchen die Realität auf ihre wesentliche funktionelle Essenz zu reduzieren.

39 Welche Möglichkeiten der Modellierung von Synthetischen und Explanativen Modellen werden angewandt?

Modellierung auf Basis struktureller Spekulationen
Modellierung auf Basis bekannter Strukturen
Modellierung auf Basis existierender Theorien
Modellierung auf Basis innovativer Vorstellungen

40 Der Sinn von kognitiven Architekturen besteht darin, ...

mehrere unterschiedliche kognitive Aufgaben modellieren und bearbeiten zu können.
die Struktur eines spezifischen kognitiven Prozesses isoliert zu modellieren.
Theorie und deren komputationale Realisierung zu integrieren.
grundlegende Mechanismen menschlicher Kognition integriert zu beschreiben.

41 Im Vergleich zu ACT-R…

hat Soar kein separates Arbeitsgedächtnis.
ist auch in Soar prozedurales Wissen in einem Regelspeicher abgelegt.
ist deklaratives Wissen bei Soar in Form von Chunks abgespeichert.
gibt es bei Soar mehrere Mechanismen, neues Wissen zu erwerben.

42 Welche der folgenden Merkmale besitzen komplexe Systeme?

Emergenz
Pfadunabhängigkeit
Linearität
Selbstorganisation