Literatur: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
Wehner (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
Wehner (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
||
Zeile 16: | Zeile 16: | ||
''' Kognitive Modellierung''' | ''' Kognitive Modellierung''' | ||
* Anders, R., Alario, F. X., & Van Maanen, L. (2016). The shifted Wald distribution for response time data analysis. Psychological methods, 21(3), 309. | |||
* Anderson, B. (2014). Computational neuroscience and cognitive modelling: a student's introduction to methods and procedures. Sage. | |||
* Andres, J.: Das allgemeine lineare Modell. In Edgar Erdfelder, Rainer Mausfeld, Thorsten Meiser & Georg Rudinger (Hrsg.), Handbuch quantitative Methoden, 1996 (S.185-200); Weinheim: Belz. | |||
* Bundesen, C., & Habekost, T. (2007). Models of attention. | |||
* Busemeyer, J. R., & Diederich, A. (2010). Cognitive modeling. Sage. | |||
* Balota, D. A., & Yap, M. J. (2011). Moving beyond the mean in studies of mental chronometry: The power of response time distributional analyses. Current Directions in Psychological Science, 20(3), 160–166. | * Balota, D. A., & Yap, M. J. (2011). Moving beyond the mean in studies of mental chronometry: The power of response time distributional analyses. Current Directions in Psychological Science, 20(3), 160–166. | ||
* Bundesen, C., & Habekost, T. (2007). Models of attention. | * Bundesen, C., & Habekost, T. (2007). Models of attention. | ||
* Forstmann, B. U., Ratcliff, R., & Wagenmakers, E. J. (2016). Sequential sampling models in cognitive neuroscience: Advantages, applications, and extensions. Annual review of psychology, 67. | |||
* Goldstone, R. L., & Janssen, M. A. (2005). Computational models of collective behavior. Trends in Cognitive Sciences, 9(9), 424–430. | * Goldstone, R. L., & Janssen, M. A. (2005). Computational models of collective behavior. Trends in Cognitive Sciences, 9(9), 424–430. | ||
* Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., … DeAngelis, D. L. (2005). Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science, 310(5750), 987–991. | * Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., … DeAngelis, D. L. (2005). Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science, 310(5750), 987–991. | ||
Zeile 26: | Zeile 32: | ||
* Lins, J., & Schöner, G. (2014). A Neural Approach to Cognition Based on Dynamic Field Theory. Neural Fields, 319–339. | * Lins, J., & Schöner, G. (2014). A Neural Approach to Cognition Based on Dynamic Field Theory. Neural Fields, 319–339. | ||
* Macho, S. (2002). Cognitive modeling with spreadsheets. Behavior Research Methods, Instruments, and Computers, 34(1), 19–36. | * Macho, S. (2002). Cognitive modeling with spreadsheets. Behavior Research Methods, Instruments, and Computers, 34(1), 19–36. | ||
* | * Matzke, D., & Wagenmakers, E. J. (2009). Psychological interpretation of the ex-Gaussian and shifted Wald parameters: A diffusion model analysis. Psychonomic bulletin & review, 16(5), 798-817. | ||
* McClelland, J. L. (2009). The Place of Modeling in Cognitive Science. Topics in Cognitive Science, 1(1), 11–38. | |||
* McKerchar, T. L., Green, L., Myerson, J., Pickford, T. S., Hill, J. C., & Stout, S. C. (2009). A comparison of four models of delay discounting in humans. Behavioural processes, 81(2), 256-259. | |||
* Miller, R., Scherbaum, S., Heck, D. W., Goschke, T., & Enge, S. (2017). On the relation between the (censored) shifted Wald and the Wiener distribution as measurement models for choice response times. Applied Psychological Measurement, 0146621617710465. | |||
* Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion Decision Model: Current Issues and History. Trends in Cognitive Sciences, 20(4), 260–281. | * Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion Decision Model: Current Issues and History. Trends in Cognitive Sciences, 20(4), 260–281. | ||
* Ratcliff, R., Spieler, D., & Mckoon, G. (2000). Explicitly modeling the effects of aging on response time. Psychonomic Bulletin & Review, 7(1), 1-25. | |||
* Rey, G. D., & Wender, K. F. (2008). Neuronale Netze: eine Einführung in die Grundlagen, Anwendungen und Datenauswertung. | * Rey, G. D., & Wender, K. F. (2008). Neuronale Netze: eine Einführung in die Grundlagen, Anwendungen und Datenauswertung. | ||
* Rudolf, M., & Müller, J. (2012). Multivariate Verfahren: eine praxisorientierte Einführung mit Anwendungsbeispielen in SPSS. Hogrefe Verlag. | |||
* Sandamirskaya, Y., Zibner, S. K. U., Schneegans, S., & Schöner, G. (2013). Using Dynamic Field Theory to extend the embodiment stance toward higher cognition. New Ideas in Psychology, 31(3), 322–339. | * Sandamirskaya, Y., Zibner, S. K. U., Schneegans, S., & Schöner, G. (2013). Using Dynamic Field Theory to extend the embodiment stance toward higher cognition. New Ideas in Psychology, 31(3), 322–339. | ||
* Sequential sampling models in cognitive neuroscience: Advantages, applications, and extensions. Annual review of psychology, 67. | |||
* Siegfried, R. (2009). Agent-based modeling and simulation. In Modeling and Simulation of Complex Systems (pp. 86–98). | |||
* Schoner, G., & Kelso, J. A. (1988). Dynamic pattern generation in behavioral and neural systems. Science, 239(4847), 1513–1520. | * Schoner, G., & Kelso, J. A. (1988). Dynamic pattern generation in behavioral and neural systems. Science, 239(4847), 1513–1520. | ||
* Siegfried, R. (2009). Agent-based modeling and simulation. In Modeling and Simulation of Complex Systems (pp. 86–98). | * Siegfried, R. (2009). Agent-based modeling and simulation. In Modeling and Simulation of Complex Systems (pp. 86–98). | ||
* Tuller, B., Case, P., Ding, M., & Kelso, J. A. S. (1994). The nonlinear dynamics of speech categorization. Journal of Experimental Psychology: Human Perception and Performance, 20(1), 3–16. | * Tuller, B., Case, P., Ding, M., & Kelso, J. A. S. (1994). The nonlinear dynamics of speech categorization. Journal of Experimental Psychology: Human Perception and Performance, 20(1), 3–16. | ||
* Stephan, A., & Walter, S. (Eds.). (2013). Handbuch Kognitionswissenschaft. Springer-Verlag. | |||
* Voss, A., Rothermund, K., Gast, A., & Wentura, D. (2013). Cognitive processes in associative and categorical priming: A diffusion model analysis. Journal of Experimental Psychology: General, 142(2), 536. | |||
* Wilensky, U., & Resnick, M. (1999). Springer Thinking in Levels: A Dynamic Systems Approach to Making Sense of the World Thinking in Levels: A Dynamic Systems Approach to Making Sense of the World. Source: Journal of Science Education and Technology Journal of Science Education and Technology, 8(1), 3–19. | * Wilensky, U., & Resnick, M. (1999). Springer Thinking in Levels: A Dynamic Systems Approach to Making Sense of the World Thinking in Levels: A Dynamic Systems Approach to Making Sense of the World. Source: Journal of Science Education and Technology Journal of Science Education and Technology, 8(1), 3–19. |
Version vom 28. August 2018, 15:21 Uhr
Einführung in die Methoden & Versuchsplanung
- Bortz, J., Döring, N. (2006) Forschungsmethoden und Evaluation. Berlin: Springer
- Goodwin, C. J. (2009) Research in Psychology. Hoboken NJ: Wiley
- Hecht, H., Desnizza, W. (2012) Psychologie als empirische Wissenschaft. Berlin: Springer
- Herzog, W. (2012) Wissenschafts-theoretische Grundlagen der Psychologie. Berlin: Springer
- Hussy, W., & Jain, A. (2002). Experimentelle Hypothesenprüfung in der Psychologie. Göttingen: Hogrefe
- Hussy, W., Schreier, M., Echterhoff, G. (2010) Forschungsmethoden in Psychologie und Sozialwissenschaften für Bachelor. Berlin: Springer
- Kukla, A., & Walmsley, J. (2006). Mind: A Historical and Philosophical Introduction to the Major Theories. Indianapolis: Hackett Publishing
- Sarris, V. (1992) Methodologische Grundlagen der Experimentalpsychologie, Bd.2, Versuchsplanung und Stadien des psychologischen Experiments. München: UTB
- Schnell, R., Hill, P.B., Esser, E. (2011) Methoden der empirischen Sozialforschung. München: Oldenbourg
- Whitley, B.E., Kite, M.E. (2013) Principles of Research in Behavioral Science. New York: Routledge
- Walach, H. (2013) Psychologie: Wissenschaftstheorie, philosophische Grundlagen und Geschichte. Stuttgart: Kohlhammer
Kognitive Modellierung
- Anders, R., Alario, F. X., & Van Maanen, L. (2016). The shifted Wald distribution for response time data analysis. Psychological methods, 21(3), 309.
- Anderson, B. (2014). Computational neuroscience and cognitive modelling: a student's introduction to methods and procedures. Sage.
- Andres, J.: Das allgemeine lineare Modell. In Edgar Erdfelder, Rainer Mausfeld, Thorsten Meiser & Georg Rudinger (Hrsg.), Handbuch quantitative Methoden, 1996 (S.185-200); Weinheim: Belz.
- Bundesen, C., & Habekost, T. (2007). Models of attention.
- Busemeyer, J. R., & Diederich, A. (2010). Cognitive modeling. Sage.
- Balota, D. A., & Yap, M. J. (2011). Moving beyond the mean in studies of mental chronometry: The power of response time distributional analyses. Current Directions in Psychological Science, 20(3), 160–166.
- Bundesen, C., & Habekost, T. (2007). Models of attention.
- Forstmann, B. U., Ratcliff, R., & Wagenmakers, E. J. (2016). Sequential sampling models in cognitive neuroscience: Advantages, applications, and extensions. Annual review of psychology, 67.
- Goldstone, R. L., & Janssen, M. A. (2005). Computational models of collective behavior. Trends in Cognitive Sciences, 9(9), 424–430.
- Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., … DeAngelis, D. L. (2005). Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science, 310(5750), 987–991.
- Heathcote, A., & Brown, S. (2015). An Introduction to Good Practices in Cognitive An Introduction to Good Practices in Cognitive Modeling. Springer.
- Honing, H. (2006). The role of surprise in theory testing: Some preliminary observations. In Proceedings of the international conference on music perception and cognition (pp. 38–42).
- Izhikevich, E. M. (2007). Solving the distal reward problem through linkage of STDP and dopamine signaling. Cerebral Cortex, 17(10), 2443–2452.
- Kelso, J. A. S. (1997). Dynamic Patterns: The Self-Organization of Behavior.
- Lins, J., & Schöner, G. (2014). A Neural Approach to Cognition Based on Dynamic Field Theory. Neural Fields, 319–339.
- Macho, S. (2002). Cognitive modeling with spreadsheets. Behavior Research Methods, Instruments, and Computers, 34(1), 19–36.
- Matzke, D., & Wagenmakers, E. J. (2009). Psychological interpretation of the ex-Gaussian and shifted Wald parameters: A diffusion model analysis. Psychonomic bulletin & review, 16(5), 798-817.
- McClelland, J. L. (2009). The Place of Modeling in Cognitive Science. Topics in Cognitive Science, 1(1), 11–38.
- McKerchar, T. L., Green, L., Myerson, J., Pickford, T. S., Hill, J. C., & Stout, S. C. (2009). A comparison of four models of delay discounting in humans. Behavioural processes, 81(2), 256-259.
- Miller, R., Scherbaum, S., Heck, D. W., Goschke, T., & Enge, S. (2017). On the relation between the (censored) shifted Wald and the Wiener distribution as measurement models for choice response times. Applied Psychological Measurement, 0146621617710465.
- Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion Decision Model: Current Issues and History. Trends in Cognitive Sciences, 20(4), 260–281.
- Ratcliff, R., Spieler, D., & Mckoon, G. (2000). Explicitly modeling the effects of aging on response time. Psychonomic Bulletin & Review, 7(1), 1-25.
- Rey, G. D., & Wender, K. F. (2008). Neuronale Netze: eine Einführung in die Grundlagen, Anwendungen und Datenauswertung.
- Rudolf, M., & Müller, J. (2012). Multivariate Verfahren: eine praxisorientierte Einführung mit Anwendungsbeispielen in SPSS. Hogrefe Verlag.
- Sandamirskaya, Y., Zibner, S. K. U., Schneegans, S., & Schöner, G. (2013). Using Dynamic Field Theory to extend the embodiment stance toward higher cognition. New Ideas in Psychology, 31(3), 322–339.
- Sequential sampling models in cognitive neuroscience: Advantages, applications, and extensions. Annual review of psychology, 67.
- Siegfried, R. (2009). Agent-based modeling and simulation. In Modeling and Simulation of Complex Systems (pp. 86–98).
- Schoner, G., & Kelso, J. A. (1988). Dynamic pattern generation in behavioral and neural systems. Science, 239(4847), 1513–1520.
- Siegfried, R. (2009). Agent-based modeling and simulation. In Modeling and Simulation of Complex Systems (pp. 86–98).
- Tuller, B., Case, P., Ding, M., & Kelso, J. A. S. (1994). The nonlinear dynamics of speech categorization. Journal of Experimental Psychology: Human Perception and Performance, 20(1), 3–16.
- Stephan, A., & Walter, S. (Eds.). (2013). Handbuch Kognitionswissenschaft. Springer-Verlag.
- Voss, A., Rothermund, K., Gast, A., & Wentura, D. (2013). Cognitive processes in associative and categorical priming: A diffusion model analysis. Journal of Experimental Psychology: General, 142(2), 536.
- Wilensky, U., & Resnick, M. (1999). Springer Thinking in Levels: A Dynamic Systems Approach to Making Sense of the World Thinking in Levels: A Dynamic Systems Approach to Making Sense of the World. Source: Journal of Science Education and Technology Journal of Science Education and Technology, 8(1), 3–19.