Literatur: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
Wehner (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
Wehner (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
||
(8 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 15: | Zeile 15: | ||
''' Kognitive Modellierung''' | ''' Kognitive Modellierung''' | ||
* Anders, R., Alario, F., & Van Maanen, L. (2016). The shifted Wald distribution for response time data analysis. ''Psychological methods, 21''(3), 309. | |||
* Anderson, B. (2014). ''Computational neuroscience and cognitive modelling: a student's introduction to methods and procedures''. Sage. | |||
* Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of the mind. ''Psychological review, 111''(4), 1036. | |||
* Anderson, J. R. (1996). ACT: A simple theory of complex cognition. ''American Psychologist, 51''(4), 355. | |||
* Andres, J.: Das allgemeine lineare Modell. In Edgar Erdfelder, Rainer Mausfeld, Thorsten Meiser & Georg Rudinger (Hrsg.), Handbuch quantitative Methoden, 1996 (S.185-200); Weinheim: Belz. | |||
* Balota, D. A., & Yap, M. J. (2011). Moving beyond the mean in studies of mental chronometry: The power of response time distributional analyses. ''Current Directions in Psychological Science, 20''(3), 160-166. | |||
* Bundesen, C., & Habekost, T. (2007). Models of attention. | |||
* Busemeyer, J. R., & Diederich, A. (2010). ''Cognitive modeling''. Sage. | |||
* Domjan, M. (2014). ''The principles of learning and behavior''. Nelson Education. | |||
* Forstmann, B. U., Ratcliff, R., & Wagenmakers, E. J. (2016). Sequential sampling models in cognitive neuroscience: Advantages, applications, and extensions. ''Annual review of psychology, 67.'' | |||
* Gaschler, R. (2014). Kognitive Architektur. In M. A. Wirtz (Hrsg.), ''Dorsch – Lexikon der Psychologie'' (18. Aufl., S. 839). Bern: Verlag Hogrefe Verlag. | |||
* Goldstone, R. L., & Janssen, M. A. (2005). Computational models of collective behavior. ''Trends in cognitive sciences, 9''(9), 424-430. | |||
* Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., ... & DeAngelis, D. L. (2005). Pattern-oriented modeling of agent-based complex systems: lessons from ecology. ''Science, 310''(5750), 987-991. | |||
* Heathcote, A., Brown, S. D., & Wagenmakers, E. J. (2015). An introduction to good practices in cognitive modeling. In ''An introduction to model-based cognitive neuroscience'' (pp. 25-48). Springer, New York, NY. | |||
* Honing, H. (2006). The role of surprise in theory testing: Some preliminary observations. In ''Proceedings of the international conference on music perception and cognition'' (pp. 38-42). | |||
* Izhikevich, E. M. (2007). Solving the distal reward problem through linkage of STDP and dopamine signaling. ''Cerebral cortex, 17''(10), 2443-2452. | |||
* Kelso, J. S. (1997). ''Dynamic patterns: The self-organization of brain and behavior.'' MIT press. | |||
* Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for general intelligence. ''Artificial intelligence, 33''(1), 1-64. | |||
* Lins, J., & Schöner, G. (2014). A neural approach to cognition based on dynamic field theory. In ''Neural Fields'' (pp. 319-339). Springer, Berlin, Heidelberg. | |||
* Macho, S. (2002). Cognitive modeling with spreadsheets. ''Behavior Research Methods, Instruments, & Computers, 34''(1), 19-36. | |||
* Mathys, C. D., Lomakina, E. I., Daunizeau, J., Iglesias, S., Brodersen, K. H., Friston, K. J., & Stephan, K. E. (2014). Uncertainty in perception and the Hierarchical Gaussian Filter. ''Frontiers in human neuroscience, 8'', 825. | |||
* Matzke, D., & Wagenmakers, E. J. (2009). Psychological interpretation of the ex-Gaussian and shifted Wald parameters: A diffusion model analysis. ''Psychonomic bulletin & review, 16''(5), 798-817. | |||
* McClelland, J. L. (2009). The place of modeling in cognitive science. ''Topics in Cognitive Science, 1''(1), 11-38. | |||
* McKerchar, T. L., Green, L., Myerson, J., Pickford, T. S., Hill, J. C., & Stout, S. C. (2009). A comparison of four models of delay discounting in humans. ''Behavioural processes, 81''(2), 256-259. | |||
* Miller, R., Scherbaum, S., Heck, D. W., Goschke, T., & Enge, S. (2018). On the relation between the (censored) shifted Wald and the Wiener distribution as measurement models for choice response times. ''Applied psychological measurement, 42''(2), 116-135. | |||
* Portenier, C., & Gromes, W. (2005). ''Mathematik für Humanbiologen und Biologen''. Fachbereich Mathematik und Informatik Philipps-Universität Marburg. | |||
* Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: current issues and history. ''Trends in cognitive sciences, 20''(4), 260-281. | |||
* Ratcliff, R., Spieler, D., & Mckoon, G. (2000). Explicitly modeling the effects of aging on response time. ''Psychonomic Bulletin & Review, 7''(1), 1-25. | |||
* Rey, G. D., & Wender, K. F. (2008). Neuronale Netze. ''Eine Einführung in die Grundlagen, Anwendungen und Datenauswertung.'' Huber, Bern. | |||
* Rescorla, R. A. (2008) Rescorla-Wagner model. ''Scholarpedia, 3''(3):2237. | |||
* Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. ''Classical conditioning II: Current research and theory, 2'', 64-99. | |||
* Rudolf, M., & Müller, J. (2012). ''Multivariate Verfahren: eine praxisorientierte Einführung mit Anwendungsbeispielen in SPSS.'' Hogrefe Verlag. | |||
* Sandamirskaya, Y., Zibner, S. K., Schneegans, S., & Schöner, G. (2013). Using dynamic field theory to extend the embodiment stance toward higher cognition. ''New Ideas in Psychology, 31''(3), 322-339. | |||
* Siegfried, R. (2009). Agent-based modeling and simulation. In Modeling and Simulation of Complex Systems (pp. 86–98). | |||
* Schoner, G., & Kelso, J. A. (1988). Dynamic pattern generation in behavioral and neural systems. Science, 239(4847), 1513-1520. | |||
* Sun, R. (2008). Introduction to computational cognitive modeling. ''Cambridge handbook of computational psychology'', 3-19. | |||
* Tuller, B., Case, P., Ding, M., & Kelso, J. A. (1994). The nonlinear dynamics of speech categorization. ''Journal of Experimental Psychology: Human perception and performance, 20''(1), 3. | |||
* Stephan, A., & Walter, S. (Eds.). (2013). ''Handbuch Kognitionswissenschaft.'' Springer-Verlag. | |||
* Voss, A., Rothermund, K., Gast, A., & Wentura, D. (2013). Cognitive processes in associative and categorical priming: A diffusion model analysis. ''Journal of Experimental Psychology: General, 142''(2), 536. | |||
* Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems approach to making sense of the world. ''Journal of Science Education and technology, 8''(1), 3-19. | |||
* Woergoetter, F. & Porr, B. (2008) Reinforcement Learning. ''Scholarpedia, 3''(3):1448. | |||
'''Statistische Grundbegriffe und Grundlagen multivariater Verfahren''' | |||
* Bock, J. (1998). ''Bestimmung des Stichprobenumfangs: Für biologische Experimente und kontrollierte klinische Studien''. München: Oldenbourg. | |||
* Bortz, J., & Schuster, C. (2016). ''Statistik für Human- und Sozialwissenschaftler''. Berlin: Springer. | |||
* Bühner, M. (2010). ''Einführung in die Test- und Fragebogenkonstruktion'' (3. Aufl.; Kapitel 6). München: Pearson Studium. | |||
* Clauß, G., Finze, F. R., & Partzsch, L. (2011). ''Grundlagen der Statistik für Soziologen, Pädagogen, Psychologen und Mediziner''. Frankfurt: Europa-Lehrmittel | |||
* Cohen, J. (2013). ''Statistical power analysis for the behavioral sciences''. Routledge. | |||
* Collingridge, D. S. (2013). A primer on quantitized data analysis and permutation testing. ''Journal of Mixed Methods Research'', 7(1), 81-97. | |||
* Eid, M., Gollwitzer, M., & Schmitt, M. (2017). ''Statistik und Forschungsmethoden''. Weinheim: Beltz. | |||
* Hayes, A. F., & Cai, L. (2007). Using heteroskedasticity-consistent standard error estimators in OLS regression: An introduction and software implementation. ''Behavior research methods'', 39(4), 709-722. | |||
* Heiler, S., & Weichselberger, K. (1969). Über den Permutationstest und ein daraus ableitbares Konfidenzintervall. ''Metrika'', 14(1), 232-248. | |||
* Holling, H. & Gediga, G. (2010). ''Statistik - Deskriptive Verfahren''. Göttingen: Hogrefe. | |||
* Manly, B.F. (2018). ''Randomization, bootstrap and Monte Carlo Methods in biology''. Chapman and Hall/CRC | |||
* Rudolf, M. & Buse, J. (2020). ''Multivariate Verfahren. Eine praxisorientierte Einführung mit Anwendungsbeispielen''. Göttingen: Hogrefe. | |||
* Rudolf, M., & Kuhlisch, W. (2008). ''Biostatistik: Eine Einführung für Biowissenschaftler''. München: Pearson Studium. |
Aktuelle Version vom 16. März 2020, 22:38 Uhr
Einführung in die Methoden & Versuchsplanung
- Bortz, J., Döring, N. (2006) Forschungsmethoden und Evaluation. Berlin: Springer
- Goodwin, C. J. (2009) Research in Psychology. Hoboken NJ: Wiley
- Hecht, H., Desnizza, W. (2012) Psychologie als empirische Wissenschaft. Berlin: Springer
- Herzog, W. (2012) Wissenschafts-theoretische Grundlagen der Psychologie. Berlin: Springer
- Hussy, W., & Jain, A. (2002). Experimentelle Hypothesenprüfung in der Psychologie. Göttingen: Hogrefe
- Hussy, W., Schreier, M., Echterhoff, G. (2010) Forschungsmethoden in Psychologie und Sozialwissenschaften für Bachelor. Berlin: Springer
- Kukla, A., & Walmsley, J. (2006). Mind: A Historical and Philosophical Introduction to the Major Theories. Indianapolis: Hackett Publishing
- Sarris, V. (1992) Methodologische Grundlagen der Experimentalpsychologie, Bd.2, Versuchsplanung und Stadien des psychologischen Experiments. München: UTB
- Schnell, R., Hill, P.B., Esser, E. (2011) Methoden der empirischen Sozialforschung. München: Oldenbourg
- Whitley, B.E., Kite, M.E. (2013) Principles of Research in Behavioral Science. New York: Routledge
- Walach, H. (2013) Psychologie: Wissenschaftstheorie, philosophische Grundlagen und Geschichte. Stuttgart: Kohlhammer
Kognitive Modellierung
- Anders, R., Alario, F., & Van Maanen, L. (2016). The shifted Wald distribution for response time data analysis. Psychological methods, 21(3), 309.
- Anderson, B. (2014). Computational neuroscience and cognitive modelling: a student's introduction to methods and procedures. Sage.
- Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of the mind. Psychological review, 111(4), 1036.
- Anderson, J. R. (1996). ACT: A simple theory of complex cognition. American Psychologist, 51(4), 355.
- Andres, J.: Das allgemeine lineare Modell. In Edgar Erdfelder, Rainer Mausfeld, Thorsten Meiser & Georg Rudinger (Hrsg.), Handbuch quantitative Methoden, 1996 (S.185-200); Weinheim: Belz.
- Balota, D. A., & Yap, M. J. (2011). Moving beyond the mean in studies of mental chronometry: The power of response time distributional analyses. Current Directions in Psychological Science, 20(3), 160-166.
- Bundesen, C., & Habekost, T. (2007). Models of attention.
- Busemeyer, J. R., & Diederich, A. (2010). Cognitive modeling. Sage.
- Domjan, M. (2014). The principles of learning and behavior. Nelson Education.
- Forstmann, B. U., Ratcliff, R., & Wagenmakers, E. J. (2016). Sequential sampling models in cognitive neuroscience: Advantages, applications, and extensions. Annual review of psychology, 67.
- Gaschler, R. (2014). Kognitive Architektur. In M. A. Wirtz (Hrsg.), Dorsch – Lexikon der Psychologie (18. Aufl., S. 839). Bern: Verlag Hogrefe Verlag.
- Goldstone, R. L., & Janssen, M. A. (2005). Computational models of collective behavior. Trends in cognitive sciences, 9(9), 424-430.
- Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., ... & DeAngelis, D. L. (2005). Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science, 310(5750), 987-991.
- Heathcote, A., Brown, S. D., & Wagenmakers, E. J. (2015). An introduction to good practices in cognitive modeling. In An introduction to model-based cognitive neuroscience (pp. 25-48). Springer, New York, NY.
- Honing, H. (2006). The role of surprise in theory testing: Some preliminary observations. In Proceedings of the international conference on music perception and cognition (pp. 38-42).
- Izhikevich, E. M. (2007). Solving the distal reward problem through linkage of STDP and dopamine signaling. Cerebral cortex, 17(10), 2443-2452.
- Kelso, J. S. (1997). Dynamic patterns: The self-organization of brain and behavior. MIT press.
- Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for general intelligence. Artificial intelligence, 33(1), 1-64.
- Lins, J., & Schöner, G. (2014). A neural approach to cognition based on dynamic field theory. In Neural Fields (pp. 319-339). Springer, Berlin, Heidelberg.
- Macho, S. (2002). Cognitive modeling with spreadsheets. Behavior Research Methods, Instruments, & Computers, 34(1), 19-36.
- Mathys, C. D., Lomakina, E. I., Daunizeau, J., Iglesias, S., Brodersen, K. H., Friston, K. J., & Stephan, K. E. (2014). Uncertainty in perception and the Hierarchical Gaussian Filter. Frontiers in human neuroscience, 8, 825.
- Matzke, D., & Wagenmakers, E. J. (2009). Psychological interpretation of the ex-Gaussian and shifted Wald parameters: A diffusion model analysis. Psychonomic bulletin & review, 16(5), 798-817.
- McClelland, J. L. (2009). The place of modeling in cognitive science. Topics in Cognitive Science, 1(1), 11-38.
- McKerchar, T. L., Green, L., Myerson, J., Pickford, T. S., Hill, J. C., & Stout, S. C. (2009). A comparison of four models of delay discounting in humans. Behavioural processes, 81(2), 256-259.
- Miller, R., Scherbaum, S., Heck, D. W., Goschke, T., & Enge, S. (2018). On the relation between the (censored) shifted Wald and the Wiener distribution as measurement models for choice response times. Applied psychological measurement, 42(2), 116-135.
- Portenier, C., & Gromes, W. (2005). Mathematik für Humanbiologen und Biologen. Fachbereich Mathematik und Informatik Philipps-Universität Marburg.
- Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: current issues and history. Trends in cognitive sciences, 20(4), 260-281.
- Ratcliff, R., Spieler, D., & Mckoon, G. (2000). Explicitly modeling the effects of aging on response time. Psychonomic Bulletin & Review, 7(1), 1-25.
- Rey, G. D., & Wender, K. F. (2008). Neuronale Netze. Eine Einführung in die Grundlagen, Anwendungen und Datenauswertung. Huber, Bern.
- Rescorla, R. A. (2008) Rescorla-Wagner model. Scholarpedia, 3(3):2237.
- Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. Classical conditioning II: Current research and theory, 2, 64-99.
- Rudolf, M., & Müller, J. (2012). Multivariate Verfahren: eine praxisorientierte Einführung mit Anwendungsbeispielen in SPSS. Hogrefe Verlag.
- Sandamirskaya, Y., Zibner, S. K., Schneegans, S., & Schöner, G. (2013). Using dynamic field theory to extend the embodiment stance toward higher cognition. New Ideas in Psychology, 31(3), 322-339.
- Siegfried, R. (2009). Agent-based modeling and simulation. In Modeling and Simulation of Complex Systems (pp. 86–98).
- Schoner, G., & Kelso, J. A. (1988). Dynamic pattern generation in behavioral and neural systems. Science, 239(4847), 1513-1520.
- Sun, R. (2008). Introduction to computational cognitive modeling. Cambridge handbook of computational psychology, 3-19.
- Tuller, B., Case, P., Ding, M., & Kelso, J. A. (1994). The nonlinear dynamics of speech categorization. Journal of Experimental Psychology: Human perception and performance, 20(1), 3.
- Stephan, A., & Walter, S. (Eds.). (2013). Handbuch Kognitionswissenschaft. Springer-Verlag.
- Voss, A., Rothermund, K., Gast, A., & Wentura, D. (2013). Cognitive processes in associative and categorical priming: A diffusion model analysis. Journal of Experimental Psychology: General, 142(2), 536.
- Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems approach to making sense of the world. Journal of Science Education and technology, 8(1), 3-19.
- Woergoetter, F. & Porr, B. (2008) Reinforcement Learning. Scholarpedia, 3(3):1448.
Statistische Grundbegriffe und Grundlagen multivariater Verfahren
- Bock, J. (1998). Bestimmung des Stichprobenumfangs: Für biologische Experimente und kontrollierte klinische Studien. München: Oldenbourg.
- Bortz, J., & Schuster, C. (2016). Statistik für Human- und Sozialwissenschaftler. Berlin: Springer.
- Bühner, M. (2010). Einführung in die Test- und Fragebogenkonstruktion (3. Aufl.; Kapitel 6). München: Pearson Studium.
- Clauß, G., Finze, F. R., & Partzsch, L. (2011). Grundlagen der Statistik für Soziologen, Pädagogen, Psychologen und Mediziner. Frankfurt: Europa-Lehrmittel
- Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Routledge.
- Collingridge, D. S. (2013). A primer on quantitized data analysis and permutation testing. Journal of Mixed Methods Research, 7(1), 81-97.
- Eid, M., Gollwitzer, M., & Schmitt, M. (2017). Statistik und Forschungsmethoden. Weinheim: Beltz.
- Hayes, A. F., & Cai, L. (2007). Using heteroskedasticity-consistent standard error estimators in OLS regression: An introduction and software implementation. Behavior research methods, 39(4), 709-722.
- Heiler, S., & Weichselberger, K. (1969). Über den Permutationstest und ein daraus ableitbares Konfidenzintervall. Metrika, 14(1), 232-248.
- Holling, H. & Gediga, G. (2010). Statistik - Deskriptive Verfahren. Göttingen: Hogrefe.
- Manly, B.F. (2018). Randomization, bootstrap and Monte Carlo Methods in biology. Chapman and Hall/CRC
- Rudolf, M. & Buse, J. (2020). Multivariate Verfahren. Eine praxisorientierte Einführung mit Anwendungsbeispielen. Göttingen: Hogrefe.
- Rudolf, M., & Kuhlisch, W. (2008). Biostatistik: Eine Einführung für Biowissenschaftler. München: Pearson Studium.