Ausgelagerte Formeln: Unterschied zwischen den Versionen

Aus eLearning - Methoden der Psychologie - TU Dresden
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Zeile 132: Zeile 132:
</pre>
</pre>


== Quasi-hyperbolisch t = 0 ==
== Quasi-hyperbolisches Discounting t = 0 ==
<pre>
<pre>
$$D U(x, t)=U(x)$$
$$D U(x, t)=U(x)$$

Version vom 10. November 2021, 17:52 Uhr

Hier werden alle zu langen Formeln als LaTeX-Code hinterlegt.

Cronbachs Alpha


Inzidenz

$$\mathrm{Inzidenz}=\frac{\mathrm{\text{Anzahl neuer Fälle (Zeit t)}}}
{\mathrm{Grundgesamtheit}}$$

Standardfehler

$$\sigma_{\overline{\mathrm{x}}}=\frac{\sigma}{\sqrt{\mathrm{n}}}$$

t-Wert

$$\mathrm{t}=\frac{\overline{\mathrm{x}}-\mu}{\mathrm{s}} \sqrt{\mathrm{n}}$$

F-Wert

$$\mathrm{F}=\frac{\mathrm{QS}_{\mathrm{zwischen}}}{\mathrm{df}_{\mathrm{zwischen}}}: 
\frac{\mathrm{QS}_{\text {innerhalb }}}{\mathrm{df}_{\text {innerhalb }}}$$

Grenzen eines Konfidenzintervalls

$$G_{u}=\bar{X}-z_{1-\frac{\alpha}{2}} \cdot \sigma_{\bar{x}}$$
$$G_{o}=\bar{X}+z_{1-\frac{\alpha}{2}} \cdot \sigma_{\bar{x}}$$

Stichprobenumfang

$$\mathrm{n}=\frac{\left(\mathrm{z}_{1-\beta} + \mathrm{z}_{1-\alpha}\right)^{2} \cdot \sigma^{2}}{\Delta^{2}}$$

Pearsons Produkt-Moment-Korrelationskoeffizient r

$$\mathrm{r}_{\mathrm{xy}}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right) \cdot\left(\mathrm{y}_{\mathrm{i}}-\overline{\mathrm{y}}\right)}{(\mathrm{n}-1) \cdot \mathrm{s}_{\mathrm{x}} \cdot \mathrm{s}_{\mathrm{y}}}$$

Spearmans Rangkorrelationskoeffizient

$$\rho_{\mathrm{xy}}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{r}_{\mathrm{x}_{\mathrm{i}}}-\overline{\mathrm{r}}_{\mathrm{x}}\right) \cdot\left(\mathrm{r}_{\mathrm{y}_{\mathrm{i}}}-\overline{\mathrm{r}}_{\mathrm{y}}\right)}{(\mathrm{n}-1) \cdot \mathrm{s}_{\mathrm{r}_{\mathrm{x}}} \cdot \mathrm{s}_{\mathrm{r}_{\mathrm{y}}}}$$

Kendalls Tau

$$\tau=\frac{2 S}{n(n-1)}$$

Partieller Korrelationskoeffizient

$$r_{x y, z}=\frac{r_{x y}-r_{x z} \cdot r_{y z}}{\sqrt{\left(1-r_{x z}^{2}\right) \cdot\left(1-r_{y z}^{2}\right)}}$$

Einfache lineare Regression

$$y_{i}=b_{0}+b_{1} \cdot x_{i}+e_{i}$$

Anzahl k (Trimmed Squares Methode)

$$\mathrm{k}=\frac{\mathrm{n}+\mathrm{p}+1}{2}$$

Regressionskoeffizient

$$\widehat{\mathrm{b}}_{1}=\frac{\mathrm{s}_{\mathrm{xy}}}{\mathrm{s}_{\mathrm{x}}^{2}}$$

Regressionskonstante

$$\widehat{\mathrm{b}}_{0}=\overline{\mathrm{y}}-\widehat{\mathrm{b}}_{1} \cdot \overline{\mathrm{x}}$$

Summe der Residuen

$$\sum_{i=1}^{n} e_{i}=0$$

Bestimmtheitsmaß R²

$$\mathrm{R}^{2}=\frac{\mathrm{QS}(\widehat{\mathrm{y}})}{\mathrm{QS}(\mathrm{y})}
=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\widehat{\mathrm{y}}_{\mathrm{i}}-\overline{\mathrm{y}}\right)^{2}}{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{y}_{\mathrm{i}}-\overline{\mathrm{y}}\right)^{2}}$$

Multiple lineare Regression

$$y_{i}=b_{0}+b_{1} \cdot x_{1 i}+b_{2} \cdot x_{2 i}+\ldots+b_{k} \cdot x_{k i}+e_{i}$$

Regressionsgleichung im Beispiel Multiple lineare Regression

$$y_{i}=3.93-0.38 \cdot x_{1}+0.77 \cdot x_{2}+0.13 \cdot x_{3}+0.16 \cdot x_{4}$$

Varianzinflationsfaktor

$$\mathrm{VIF}_{\mathrm{j}}=\frac{1}{\mathrm{Tol}_{\mathrm{j}}}$$

Moderierte Regression

$$y_{i}=b_{0}+b_{1} \cdot x_{1 i}+b_{2} \cdot x_{2 i}+b_{3} \cdot x_{1 i} \cdot x_{2 i}+e_{i}$$

Hauptkomponentenanalyse

$$\mathrm{z}_{\mathrm{ik}}=\mathrm{a}_{\mathrm{i} 1} \cdot \mathrm{f}_{1 \mathrm{k}}+\mathrm{a}_{\mathrm{i} 2} \cdot 
\mathrm{f}_{2 \mathrm{k}}+\cdots+\mathrm{a}_{\mathrm{im}} \cdot \mathrm{f}_{\mathrm{mk}}$$

Exponentielles Discounting

$$D U(x, t)=U(x) \cdot \delta^{t}$$

Hyperbolisches Discounting

$$D U(x, t)=\frac{U(x)}{1+k t}$$

Hyperboloid Modell

$$D U(x, t)=\frac{U(x)}{(1+kt)^{2}}$$

Quasi-hyperbolisches Discounting t = 0

$$D U(x, t)=U(x)$$

Quasi-hyperbolisch t > 0

$$D U(x, t)=U(x) \cdot \beta \delta^{t}$$