Zufallsgröße: Unterschied zwischen den Versionen

Aus eLearning - Methoden der Psychologie - TU Dresden
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 9: Zeile 9:


*'''Standardabweichung:''' Ein Streuungsmaß, das die durchschnittliche Abweichung der Werte einer Zufallsgröße von ihrem Erwartungswert angibt, also die Wurzel der Varianz
*'''Standardabweichung:''' Ein Streuungsmaß, das die durchschnittliche Abweichung der Werte einer Zufallsgröße von ihrem Erwartungswert angibt, also die Wurzel der Varianz
** <math>\sigma(X) = \sqrt(Var(X))</math>
** <math>\sigma(X) = \sqrt{Var(X)}</math>


=Rechenregeln=
=Rechenregeln=


=Verteilungen=
=Verteilungen=

Version vom 14. Mai 2024, 22:29 Uhr

Zufallsgrößen (auch Zufallsvariablen) ordnen jedem möglichen Ergebnis einer Zufallssituation eine Zahl zu oder anders: der Wert einer Zufallsgröße hängt vom Zufall ab, z.B. die Augensumme mehrerer geworfener Würfel.

Eigenschaften

  • Erwartungswert: ein nach der Wahrscheinlicheit der Werte gewichtetes Mittel
  • Varianz: Streuung von Werten um einen Mittel- oder Erwartungswert, bzw. die durchschnittliche quadratische Abweichung von Werten einer Zufallsgröße von ihrem Erwartungswert.
  • Standardabweichung: Ein Streuungsmaß, das die durchschnittliche Abweichung der Werte einer Zufallsgröße von ihrem Erwartungswert angibt, also die Wurzel der Varianz

Rechenregeln

Verteilungen