Trigonometrie: Unterschied zwischen den Versionen

Aus eLearning - Methoden der Psychologie - TU Dresden
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 24: Zeile 24:
==Amplitude==
==Amplitude==
Die Amplitude einer Funktion beschreibt die maximale Auslenkung oder den maximalen Abstand der Funktionswerte vom mittleren oder Ruhezustand (meist Nullpunkt) in einem Schwingungs- oder Wellenmuster. Im Kontext von periodischen Funktionen, wie z.B. Sinus- und Kosinusfunktionen, misst die Amplitude die Höhe der Welle vom mittleren Wert (der Achse) bis zum höchsten Punkt (Maximum) oder niedrigsten Punkt (Minimum) der Welle. Die Amplitude von \sin(\theta)</math>, wenn Theta ein Winkel eines Dreiecks auf dem Einheitskreis (wie oben beschrieben) ist, ist 1.
Die Amplitude einer Funktion beschreibt die maximale Auslenkung oder den maximalen Abstand der Funktionswerte vom mittleren oder Ruhezustand (meist Nullpunkt) in einem Schwingungs- oder Wellenmuster. Im Kontext von periodischen Funktionen, wie z.B. Sinus- und Kosinusfunktionen, misst die Amplitude die Höhe der Welle vom mittleren Wert (der Achse) bis zum höchsten Punkt (Maximum) oder niedrigsten Punkt (Minimum) der Welle. Die Amplitude von \sin(\theta)</math>, wenn Theta ein Winkel eines Dreiecks auf dem Einheitskreis (wie oben beschrieben) ist, ist 1.
==Phase==
Die Phase einer Sinus- oder Kosinusfunktion beschreibt die horizontale Verschiebung der Welle entlang der ''x''-Achse. Sie gibt an, wie weit die Welle nach links oder rechts verschoben ist, relativ zu einer Referenzwelle. Sie wird häufig mit einem <math>\Phi</math> angegeben. Wenn <math>\Phi = 0</math>, beginnt der Sinus im Ursprung bei [0,0] und der Cosinus bei [0,1]

Version vom 2. September 2024, 13:40 Uhr

Die Trigonometrie ist ein Teilgebiet der Mathematik, das sich mit den Beziehungen zwischen den Winkeln und Seitenlängen in Dreiecken beschäftigt. Diese Seite gibt eine kurze Einführung zu den wichtigsten Eckpunkten über trigonometrische Funktionen. Diese sind u.a. wichtig, um Verfahren von Signalverarbeitung zu verstehen (z.B. Konvolution).

Seitenverhältnisse

Die Verhältnisse der Seitenlängen in einem rechtwinkligen Dreieck in Bezug auf einen der nicht rechten Winkel lassen sich wie folgt beschreiben:

  • Sinus: das Verhältnis der Länge von Gegenkathete zur Hypothenuse
  • Kosinus: das Verhältnis der Länge der Ankathete zur Hypotenuse
  • Tangens: das Verhältnis der Länge der Gegenkathete zur Ankathete
  • Kotangens: das Reziprok des Tangens

Dabei ist die Hypothenuse die Seite, die dem rechten Winkel im Dreieck gegenüberliegt. Die Ankathete ist die Seite des Dreiecks, die neben der Hypthenuse am betreffenden Winkel anliegt. Die Gegenkathete liegt dem betreffenden Winkel gegenüber. Diese Funktionen erlauben es, Winkel in Dreiecken zu berechnen, wenn die Längen der Seiten bekannt sind, und umgekehrt die Seitenlängen zu bestimmen, wenn die Winkel bekannt sind. Um die Winkel in Dreiecken zu berechnen, wenn die Seitenlängen bekannt sind, benötigt man die Umkehrfunktionen Arkussinus (), Arkuscosinus () und Arkustangens().

TrigDreieck.PNG

Einheitskreis

Der Einheitskreis ist ein Kreis mit einem Radius von 1, der seinen Mittelpunkt im Ursprung des Koordinatensystems (0,0) hat. Er ist ein wichtiges Werkzeug in der Trigonometrie, weil die Definitionen der trigonometrischen Funktionen Sinus und Kosinus auf ihm basieren können: Für einen Winkel entspricht der Kosinus dem x-Koordinatenwert und der Sinus dem y-Koordinatenwert eines Punktes auf dem Einheitskreis. Eine Erklärung mit Visualisierung haben 3Blue1Brown erstellt (Stand August 2024).

Einheitskreis.PNG

Funktionseigenschaften

Periodizität & Frequenz

Wie im oben erwähnten Video ersichtlich, sind Sinus und Kosinus periodisch, das heißt, sie wiederholen sich in regelmäßigen Abständen. Die Zeit, bis eine Funktion einmal ihren Zyklus durchlaufen hat, ist die Periode. Der Sinus hat eine Periode von , das heißt . Die Anzahl an Perioden, die die Funktion in einem festgelegten Intervall durchläuft ist ihre Frequenz.

Amplitude

Die Amplitude einer Funktion beschreibt die maximale Auslenkung oder den maximalen Abstand der Funktionswerte vom mittleren oder Ruhezustand (meist Nullpunkt) in einem Schwingungs- oder Wellenmuster. Im Kontext von periodischen Funktionen, wie z.B. Sinus- und Kosinusfunktionen, misst die Amplitude die Höhe der Welle vom mittleren Wert (der Achse) bis zum höchsten Punkt (Maximum) oder niedrigsten Punkt (Minimum) der Welle. Die Amplitude von \sin(\theta)</math>, wenn Theta ein Winkel eines Dreiecks auf dem Einheitskreis (wie oben beschrieben) ist, ist 1.

Phase

Die Phase einer Sinus- oder Kosinusfunktion beschreibt die horizontale Verschiebung der Welle entlang der x-Achse. Sie gibt an, wie weit die Welle nach links oder rechts verschoben ist, relativ zu einer Referenzwelle. Sie wird häufig mit einem angegeben. Wenn , beginnt der Sinus im Ursprung bei [0,0] und der Cosinus bei [0,1]