Aufgaben - Multiple lineare Regression: Unterschied zwischen den Versionen

Aus eLearning - Methoden der Psychologie - TU Dresden
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 144: Zeile 144:
{5. Die Kriteriumsvariable Y soll durch die Merkmalsmengen A (Prädiktor 1 und 3), B (Prädiktor 2 und 4) und C (Prädiktor 5, 6 und 7) vorhergesagt werden. Es wird eine hierarchische Regression angewandt. Zunächst wird die Merkmalsmenge A ins Modell einbezogen. Das ermittelte multiple Bestimmtheitsmaß R² beträgt 0.65. Im Anschluss wird die Merkmalsmenge C ins Modell ins Regressionsmodell aufgenommen. Dies führt zu einer Zunahme des multiplen Bestimmtheitsmaßes R² um 0.30.  
{5. Die Kriteriumsvariable Y soll durch die Merkmalsmengen A (Prädiktor 1 und 3), B (Prädiktor 2 und 4) und C (Prädiktor 5, 6 und 7) vorhergesagt werden. Es wird eine hierarchische Regression angewandt. Zunächst wird die Merkmalsmenge A ins Modell einbezogen. Das ermittelte multiple Bestimmtheitsmaß R² beträgt 0.65. Im Anschluss wird die Merkmalsmenge C ins Modell ins Regressionsmodell aufgenommen. Dies führt zu einer Zunahme des multiplen Bestimmtheitsmaßes R² um 0.30.  
In einer zweiten Analyse basierend auf dem gleichen Datensatz wird eine andere Reihenfolge der Aufnahme der Merkmalsmengen gewählt. Welche der folgenden Ergebnisse sind in dieser zweiten Analyse möglich?
In einer zweiten Analyse basierend auf dem gleichen Datensatz wird eine andere Reihenfolge der Aufnahme der Merkmalsmengen gewählt. Welche der folgenden Ergebnisse sind in dieser zweiten Analyse möglich?
|type="[]"}
+ Aufnahme Merkmalsmenge B → R² = 0.40; anschließend Aufnahme Merkmalsmenge C → Anstieg R² um 0.40
+ Aufnahme Merkmalsmenge B → R² = 0.40; anschließend Aufnahme Merkmalsmenge C → Anstieg R² um 0.40
+ Aufnahme Merkmalsmenge C → R² = 0.60; anschließend Aufnahme Merkmalsmenge A → Anstieg R² um 0.35
+ Aufnahme Merkmalsmenge C → R² = 0.60; anschließend Aufnahme Merkmalsmenge A → Anstieg R² um 0.35
Zeile 149: Zeile 150:
- Aufnahme Merkmalsmenge B → R² = 0.85; anschließend Aufnahme Merkmalsmenge A → Anstieg R² um 0.20
- Aufnahme Merkmalsmenge B → R² = 0.85; anschließend Aufnahme Merkmalsmenge A → Anstieg R² um 0.20


{|type="[]"}
{
|type="[]"}


{
{

Version vom 6. März 2020, 01:05 Uhr

Der folgenden Bereich enthält Fragen zur multiplen linearen Regression. Alle Fragen sind Multiple Choice Fragen, d.h. es können immer mehrere Antworten richtig sein. Klicken Sie zur Beantwortung einer Frage die korrekten Antwortmöglichkeiten an. Um Ihre Ergebnisse auszuwerten, wählen Sie bitte den Button "Speichern" am unteren Ende der Seite.

Für jede vollständig richtig beantwortete Frage erhalten Sie einen Punkt. Für falsche beantwortete Fragen werden Ihnen keine Punkte abgezogen. Sie können diese Einstellung jedoch beliebig verändern. Ihre Gesamtpunktzahl finden Sie am unteren Seitenende.


  

1 1. Welche der folgenden Definitionen kann zur Beschreibung einer multiplen linearen Regression verwendet werden?

Die multiple lineare Regression ist ein statistisches Verfahren, mit dem versucht wird, mehrere abhängige metrische Variablen durch eine oder mehrere unabhängige Variablen zu erklären.
Die multiple lineare Regression ist ein statistisches Verfahren, mit dem versucht wird, eine beobachtete abhängige metrische Variable durch mehrere unabhängige Variablen zu erklären.
Die multiple lineare Regression ist ein statistisches Verfahren, mit dem versucht wird, mehrere beobachtete abhängige ordinale oder kategoriale Variablen durch mehrere unabhängige Variablen zu erklären.
Die multiple lineare Regression ist ein statistisches Verfahren, mit dem versucht wird, eine beobachtete abhängige ordinale oder kategoriale Variable durch mehrere unabhängige Variablen zu erklären.

2 2. Mithilfe welches allgemeinen Schätzprinzips können die Regressionskoeffizienten im Rahmen einer multiplen linearen Regression bestimmt werden?

Methode der multiplen linearen Quadrate
Methode der größten Quadrate
Methode der multiplen Quadrate
Methode der kleinsten Quadrate

3 3. Welche Voraussetzungen sollten für die Durchführung einer multiplen linearen Regressionsanalyse erfüllt sein?

Homoskedastizität
Normalverteilung der Modellfehler
Statistische Abhängigkeit der Modellfehler
Festlegung von Prädiktoren und Kriterium
Gültigkeit des linearen Modells

4 4. Was bedeutet Homoskedastizität?

Varianzen der Modellfehler sind unabhängig von den konkreten Werten der Prädiktoren gleich
Mittelwerte der Modellfehler sind nicht normalverteilt
Mittelwerte der Modellfehler sind normalverteilt
Varianzen der Modellfehler sind in Abhängigkeit der konkreten Werten der Prädiktoren verschieden

5 5. Die folgenden Abbildungen stellen eine grafische Gegenüberstellung der z-standardisierten Residuen und der z-standardisierten Schätzungen für die Kriteriumsvariablen einer multiplen linearen Regression dar. Welche der Abbildungen liefern einen Hinweis auf Heteroskedastizität?

3 3 MC 3.PNG
3 3 MC 1.PNG
3 3 MC 4.PNG
3 3 MC 2.PNG

6 1. Was versteht man unter dem Begriff der „Multikollinearität“?

Multikollinearität ist ein Problem der Regressionsanalyse und liegt vor, wenn keine oder nur schwache Korrelationen zwischen den Prädiktoren bestehen.
Multikollinearität ist ein Problem der Regressionsanalyse und liegt vor, wenn zwei oder mehr der abhängigen Variablen stark miteinander korrelieren
Multikollinearität ist ein Problem der Regressionsanalyse und liegt vor, wenn keine oder nur schwache Korrelationen zwischen den abhängigen Variablen bestehen.
Multikollinearität ist ein Problem der Regressionsanalyse und liegt vor, wenn zwei oder mehr der Prädiktoren stark miteinander korrelieren.

7 2. Welche der folgenden Begriffe stellen Folgen des Vorliegens von Multikollinearität dar?

Suppressionseffekte
Redundanz
Introjektion
Konversion

8 3. Welche Folgen können durch das Vorhandensein von Multikollinearität bei der Durchführung einer multiplen linearen Regression auftreten?

Instabilität des Verfahrens zur Schätzung der Regressionskoeffizienten
Eindeutigkeit der Modellinterpretation
Ungenauigkeit von Aussagen zur Schätzung von Regressionskoeffizienten
Erhöhung der Standardfehler der Schätzungen der Regressionskoeffizienten

9 4. Welche der folgenden Beobachtungen können Warnzeichen für das Vorliegen von Multikollinearität darstellen?

Die Prädiktoren korrelieren sehr stark miteinander.
Ein Prädiktor, der sehr stark mit der Kriteriumsvariablen korreliert, besitzt im Ergebnis der Regressionsanalyse keinen signifikanten Regressionskoeffizienten.
Der VIF (Varianzinflationsfaktor) des Regressionsmodells ist gering und der Wert der Toleranz des Regressionsmodells ist sehr hoch.
Nach der Aufnahme eines weiteren Prädiktors in ein Regressionsmodell kommt es zu einer starken Veränderung der Regressionskoeffizienten.

10 5. Welche Beziehungen sind Hinweise für Redundanz eines Prädiktors?

Prädiktor korreliert hoch und signifikant mit dem Kriterium und mit anderen Prädiktoren und hat keinen signifikanten Regressionskoeffizienten in der multiplen Regressionsanalyse
Prädiktor korreliert hoch und signifikant mit dem Kriterium, aber nicht mit den anderen Prädiktoren und hat einen signifikanten Regressionskoeffizienten in der multiplen Regressionsanalyse
Prädiktor korreliert hoch und signifikant mit anderen Prädiktoren, nicht aber mit dem Kriterium, und hat einen signifikanten Regressionskoeffizienten in der multiplen Regressionsanalyse
Prädiktor korreliert hoch und signifikant mit dem Kriterium und mit anderen Prädiktoren und hat einen signifikanten Regressionskoeffizienten in der multiplen Regressionsanalyse

11 1. Welche der folgenden Ziele werden von einem Merkmalselektionsverfahrens im Rahmen einer multiplen linearen Regression verfolgt?

Erhöhung der Fehlervarianz
klare inhaltliche Interpretation des Regressionsmodells
Minimierung des erforderlichen ökonomischen, inhaltlichen und statistischen Aufwands
Identifikation von möglichst wenigen Prädiktoren, welche eine gute Vorhersage der Kriteriumsvariable ermöglichen

12 2. Das Grundprinzip von Merkmalsselektionsverfahren im Rahmen einer multiplen linearen Regression besteht darin, für einzelne Prädiktorvariablen zu beurteilen, inwieweit sich durch ihre Hinzunahme zw. Entfernung aus dem Merkmalssatz das multiple Bestimmtheitsmaß signifikant verändert. Welcher Test wird zur Prüfung der Signifikanz dieser Veränderung verwendet?

Kolmogorow-Smirnow-Test
t-Test
F-Test
Chi-Quadrat Test

13 3. Welche Arten von Merkmalssektionsverfahren werden üblicherweise im Rahmen einer multiplen linearen Regression angewandt?

Verfahren der schrittweisen Merkmalsaufnahme („Vorwärtsverfahren“)
Verfahren der schrittweisen Merkmalsentfernung („Rückwärtsverfahren“)
Verfahren der sofortigen Merkmalsaufnahme („Absolutverfahren“)
Verfahren der schrittweisen Merkmalsentfernung bzw. Merkmalsaufnahme („schrittweises Verfahren“)

14 4. Welche der folgenden Aussagen über Merkmalsselektionsverfahren im Rahmen einer multiplen linearen Regression sind wahr?

Das schrittweise Verfahren kombiniert das Rückwärts- und das Vorwärtsverfahren.
Jedes Merkmalsselektionsverfahren (Vorwärtsverfahren, Rückwärtsverfahren, …) führt dazu, dass im Regressionsmodell nach Abschluss des Verfahrens die gleichen Prädiktoren enthalten sind.
Die Anwendung eines Vorwärtsverfahrens führt in jedem Fall zu einem größeren multiplen Bestimmtheitsmaß als die Anwendung eines Rückwärtsverfahrens.
Das multiple Bestimmtheitsmaß R² des mithilfe eines Merkmalsselektionsverfahrens ermittelten Regressionsmodells kann sich in Abhängigkeit des ausgewählten Verfahrens unterscheiden.

15 5. Die Kriteriumsvariable Y soll durch die Prädiktoren A, B, C, D und E vorhergesagt werden. Die Durchführung eines Verfahrens der schrittweisen Merkmalsaufnahme (Vorwärtsverfahren) führt zur Aufnahme der Prädiktoren A und C ins Regressionsmodell. Das multiple Bestimmtheitsmaß beträgt 0.68. Basierend auf beschriebenen Ausgangsdatensatz wird außerdem ein Verfahren der schrittweisen Merkmalsentfernung (Rückwärtsverfahren) durchgeführt. Welche der folgenden Ergebnisse könnten durch dieses Verfahren ermittelt werden?

Aufnahme der Prädiktoren B und D ins Modell ; R² = 0.69
Aufnahme der Prädiktoren A und C ins Modell ; R² = 0.72
Aufnahme der Prädiktoren A und C ins Modell ; R² = 0.68
Aufnahme der Prädiktoren B und C ins Modell ; R² = 1.08

16 1. Welche(s) Ziel(e) verfolgt eine hierarchische Regression?

Untersuchung des Erklärungsbeitrages inhaltlich strukturierter Merkmalsmengen
Untersuchung des Erklärungsbeitrages von Zeitreihen
Untersuchung des Erklärungsbeitrages der Regressionskonstante
Untersuchung des Erklärungsbeitrages aus dem Datensatz extrahierter Hauptkomponenten

17 2. Was dient als Orientierung für die Auswahl der Reihenfolge der Aufnahme von Merkmalsmengen im Rahmen einer hierarchischen Regression?

inhaltliche Gesichtspunkte
Summe der β-Gewichte der Prädiktoren der Merkmalsmenge
Anzahl der Prädiktoren in den Merkmalsmengen
Summe der t-Werte der Prädiktoren der Merkmalsmenge

18 3. Welche der folgenden Aussage(n) über eine hierarchische Regression sind zutreffend?

Die Reihenfolge der Aufnahme von Merkmalsmengen ist besonders dann wichtig, wenn die Merkmalsmengen stark korrelieren.
Die Bedeutsamkeit der Reihenfolge der Aufnahme von Merkmalsmengen ist unabhängig von Multikollinearität im Datensatz.
Korrelieren die Merkmalsmengen kaum untereinander, dann resultieren abhängig von der Reihenfolge der Aufnahme der Merkmalsmengen oftmals sehr unterschiedliche Ergebnisse.
Resultieren in Abhängigkeit der Reihenfolge der Aufnahme der Merkmalsmengen unterschiedliche Regressionsmodelle, liefert dies einen Hinweis auf Multikollinearität.

19 4. Welche der folgenden Aussage(n) über das multiple Bestimmtheitsmaß R² einer hierarchischen Regression sind wahr?

Das multiple Bestimmtheitsmaß R² nimmt ab, je mehr Merkmalsmengen ins Regressionsmodell aufgenommen werden.
Ob eine Merkmalsmenge zu einer signifikanten Zunahme an Bestimmtheitsmaß führt, kann davon abhängen, in welchem Schritt die betreffende Merkmalsmenge aufgenommen wird.
Das multiple Bestimmtheitsmaß R² nimmt für die Aufnahme aller verfügbaren Merkmalsmengen ins Regressionsmodell den maximal möglichen Wert an.
Die Aufnahme von 50 % aller Merkmalsmengen führt in jedem Fall zu einem multiplen Bestimmtheitsmaß R² größer als 25 %.

20 5. Die Kriteriumsvariable Y soll durch die Merkmalsmengen A (Prädiktor 1 und 3), B (Prädiktor 2 und 4) und C (Prädiktor 5, 6 und 7) vorhergesagt werden. Es wird eine hierarchische Regression angewandt. Zunächst wird die Merkmalsmenge A ins Modell einbezogen. Das ermittelte multiple Bestimmtheitsmaß R² beträgt 0.65. Im Anschluss wird die Merkmalsmenge C ins Modell ins Regressionsmodell aufgenommen. Dies führt zu einer Zunahme des multiplen Bestimmtheitsmaßes R² um 0.30. In einer zweiten Analyse basierend auf dem gleichen Datensatz wird eine andere Reihenfolge der Aufnahme der Merkmalsmengen gewählt. Welche der folgenden Ergebnisse sind in dieser zweiten Analyse möglich?

Aufnahme Merkmalsmenge B → R² = 0.85; anschließend Aufnahme Merkmalsmenge A → Anstieg R² um 0.20
Aufnahme Merkmalsmenge B → R² = 0.40; anschließend Aufnahme Merkmalsmenge C → Anstieg R² um 0.40
Aufnahme Merkmalsmenge C → R² = 0.75; anschließend Aufnahme Merkmalsmenge A → Anstieg R² um 0.15
Aufnahme Merkmalsmenge C → R² = 0.60; anschließend Aufnahme Merkmalsmenge A → Anstieg R² um 0.35






21