Bootstrapping: Unterschied zwischen den Versionen

Aus eLearning - Methoden der Psychologie - TU Dresden
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
KKeine Bearbeitungszusammenfassung
 
(6 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
{{Nav|Navigation|Statistik|Hauptseite}}
{{Nav|Navigation|Statistik_Grundbegriffe|Hauptseite}}


Die Bootstrap-Technik nach Efron (1979) ist ein Resampling-Verfahren, welches es ermög-licht, Parameter aus einer Stichprobe zu schätzen, ohne Annahmen über eine spezifische Verteilung zu treffen. Sie wird in der Praxis angewandt, wenn die untersuchten Werte keiner bekannten Verteilung folgen.
Die Bootstrap-Technik nach Efron (1979) ist ein Resampling-Verfahren, welches es ermöglicht, Parameter aus einer Stichprobe zu schätzen, ohne Annahmen über eine spezifische Verteilung zu treffen. Sie wird in der Praxis angewandt, wenn die untersuchten Werte keiner bekannten Verteilung folgen.


Das Prinzip des Bootstrapping beruht darauf, Informationen über eine unbekannte Po-pulation durch Resampling einer einzelnen Stichprobe aus dieser Population zu erhalten. Resampling bedeutet in diesem Fall, dass eine große Anzahl Bootstrap-Stichproben mit Zu-rücklegen aus der Ausgangsstichprobe gezogen werden. Dabei wird zunächst ein einzelner Wert gezogen und wieder in die Ausgangsstichprobe zurückgelegt. Dieser Vorgang wird so häufig wiederholt, bis die Bootstrap-Stichprobe die Größe der Ausgangsstichprobe erreicht hat. Durch das Zurücklegen kann eine Bootstrap-Stichprobe einzelne Werte der Ausgangs-stichprobe mehrfach, andere Werte wiederum gar nicht enthalten. Auf diese Art werden übli-cherweise mehrere tausend Bootstrap-Stichproben erzeugt. Für jede dieser Bootstrap-Stichproben kann z.B. der arithmetische Mittelwert x̅ oder ein anderer interessierender Para-meter geschätzt werden. Anhand der Verteilung der arithmetischen Mittelwerte der Bootstrap-Strichproben sind Rückschlüsse auf die Parameter der Population möglich. Eine häufige An-wendung ist die Berechnung valider Konfidenzintervalle für Parameter der Population. In Ab-bildung 1 sind die Mittelwerte und das 95%-Konfidenzintervall von 20000 Bootstrap-Stichproben dargestellt, die aus einer nicht-normalverteilten Ausgangsstichprobe mit einem Mittelwert von x̅ = 2.75 und einer Standardabweichung von s = 1.45 gezogen wurden. 95 % der Mittelwerte aller gezogenen Bootstrapstichproben befinden sich zwischen 2.36 und 3.15.
Das Prinzip des Bootstrapping beruht darauf, Informationen über eine unbekannte Population durch Resampling einer einzelnen Stichprobe aus dieser Population zu erhalten. Resampling bedeutet in diesem Fall, dass eine große Anzahl Bootstrap-Stichproben mit Zurücklegen aus der Ausgangsstichprobe gezogen werden. Dabei wird zunächst ein einzelner Wert gezogen und wieder in die Ausgangsstichprobe zurückgelegt. Dieser Vorgang wird so häufig wiederholt, bis die Bootstrap-Stichprobe die Größe der Ausgangsstichprobe erreicht hat. Durch das Zurücklegen kann eine Bootstrap-Stichprobe einzelne Werte der Ausgangsstichprobe mehrfach, andere Werte wiederum gar nicht enthalten. Auf diese Art werden üblicherweise mehrere tausend Bootstrap-Stichproben erzeugt. Für jede dieser Bootstrap-Stichproben kann z.B. der arithmetische Mittelwert x̅ oder ein anderer interessierender Parameter geschätzt werden. Anhand der Verteilung der arithmetischen Mittelwerte der Bootstrap-Strichproben sind Rückschlüsse auf die Parameter der Population möglich. Eine häufige Anwendung ist die Berechnung valider Konfidenzintervalle für Parameter der Population. In Abbildung 1 sind die Mittelwerte und das 95%-Konfidenzintervall von 20000 Bootstrap-Stichproben dargestellt, die aus einer nicht-normalverteilten Ausgangsstichprobe mit einem Mittelwert von x̅ = 2.75 und einer Standardabweichung von s = 1.45 gezogen wurden. 95 % der Mittelwerte aller gezogenen Bootstrapstichproben befinden sich zwischen 2.36 und 3.15.






[[File:1_7_Bootstrapping.PNG|800px|Abbildung 1: Mittelwerte von 20000 Bootstrap-Stichproben (n=50) mit Darstellung des 95%-Konfidenzintervalls]]
[[File:1_7_Bootstrapping.PNG|800px|Abbildung 1: Mittelwerte von 20000 Bootstrap-Stichproben (n=50) mit Darstellung des 95%-Konfidenzintervalls|link=Ausgelagerte_Bildbeschreibungen#Säulendiagramm_Bootstrapping|Ausgelagerte Bildbeschreibung von Säulendiagramm Bootstrapping]]




Als non-parametrisches Verfahren ohne Verteilungsannahmen ist Bootstrapping in vielen Kon-texten anwendbar, wie z.B. bei der Prüfung von indirekten Effekten bei linearen Strukturglei-chungsmodellen. Eine wichtige Voraussetzung für die Anwendung der Bootstrap-Technik ist jedoch, dass die Ausgangsstichprobe repräsentativ für die Grundgesamtheit sein muss. Au-ßerdem ist das Verfahren rechenintensiv, was besonders bei zunehmender Anzahl an Bootstrap-Stichproben berücksichtigt werden muss.
Als non-parametrisches Verfahren ohne Verteilungsannahmen ist Bootstrapping in vielen Kontexten anwendbar, wie z.B. bei der Prüfung von indirekten Effekten bei linearen Strukturgleichungsmodellen. Eine wichtige Voraussetzung für die Anwendung der Bootstrap-Technik ist jedoch, dass die Ausgangsstichprobe repräsentativ für die Grundgesamtheit sein muss. Außerdem ist das Verfahren rechenintensiv, was besonders bei zunehmender Anzahl an Bootstrap-Stichproben berücksichtigt werden muss.








[[Datei:Videolink_neu.PNG|link=http://141.76.19.82:3838/mediawiki/konfidenzintervall_link.html
[[Datei:Videolink_neu.PNG|link=http://141.76.19.82:3838/mediawiki/MUVE_STAT/Videolinks/1_7_Bootstrapping_Link.html
|120px]] <span style="color: white"> kkk </span>  Im [http://141.76.19.82:3838/mediawiki/pwertlink.html Video] wird die Bootstrap-Technik näher erläutert.
|120px]] <span style="color: white"> kkk </span>  Im [http://141.76.19.82:3838/mediawiki/MUVE_STAT/Videolinks/1_7_Bootstrapping_Link.html Video] wird die Bootstrap-Technik näher erläutert.


[[Datei:Simulationslink_neu2.PNG|link=http://141.76.19.82:3838/mediawiki/1_1_p-Wert/App_Version/
[[Datei:Simulationslink_neu2.PNG|link=http://141.76.19.82:3838/mediawiki/MUVE_STAT/Apps/1_7_Bootstrapping/
|120px]] <span style="color: white"> kkk </span>  Die Methode des Bootstrappings lässt sich in der [http://141.76.19.82:3838/mediawiki/1_1_p-Wert/App_Version/ interaktiven Simulation] mit verschiedenen Ausgangsstichproben und für verschiedene Stichprobengrößen und Konfidenzniveaus nachvollziehen.
|120px]] <span style="color: white"> kkk </span>  Die Methode des Bootstrappings lässt sich in der [http://141.76.19.82:3838/mediawiki/MUVE_STAT/Apps/1_7_Bootstrapping/ interaktiven Simulation] mit verschiedenen Ausgangsstichproben und für verschiedene Stichprobengrößen und Konfidenzniveaus nachvollziehen.




Zeile 27: Zeile 27:
Manly, B.F. (2018). ''Randomization, bootstrap and Monte Carlo Methods in biology''. Chapman and Hall/CRC
Manly, B.F. (2018). ''Randomization, bootstrap and Monte Carlo Methods in biology''. Chapman and Hall/CRC


Rudolf, M., & Kuhlisch, W. (2008). ''Biostatistik: Eine Einführung für Biowissenschaftler'' (Kapitel 9.3). München: Pearson Studium.
Rudolf, M. & Kuhlisch, W. (2020). ''Biostatistik. Eine Eine Einführung für Bio- und Umweltwissenschaftler'' (2. Aufl.). München: Pearson Studium. (Kapitel 6.4)

Aktuelle Version vom 28. Februar 2023, 10:28 Uhr

Die Bootstrap-Technik nach Efron (1979) ist ein Resampling-Verfahren, welches es ermöglicht, Parameter aus einer Stichprobe zu schätzen, ohne Annahmen über eine spezifische Verteilung zu treffen. Sie wird in der Praxis angewandt, wenn die untersuchten Werte keiner bekannten Verteilung folgen.

Das Prinzip des Bootstrapping beruht darauf, Informationen über eine unbekannte Population durch Resampling einer einzelnen Stichprobe aus dieser Population zu erhalten. Resampling bedeutet in diesem Fall, dass eine große Anzahl Bootstrap-Stichproben mit Zurücklegen aus der Ausgangsstichprobe gezogen werden. Dabei wird zunächst ein einzelner Wert gezogen und wieder in die Ausgangsstichprobe zurückgelegt. Dieser Vorgang wird so häufig wiederholt, bis die Bootstrap-Stichprobe die Größe der Ausgangsstichprobe erreicht hat. Durch das Zurücklegen kann eine Bootstrap-Stichprobe einzelne Werte der Ausgangsstichprobe mehrfach, andere Werte wiederum gar nicht enthalten. Auf diese Art werden üblicherweise mehrere tausend Bootstrap-Stichproben erzeugt. Für jede dieser Bootstrap-Stichproben kann z.B. der arithmetische Mittelwert x̅ oder ein anderer interessierender Parameter geschätzt werden. Anhand der Verteilung der arithmetischen Mittelwerte der Bootstrap-Strichproben sind Rückschlüsse auf die Parameter der Population möglich. Eine häufige Anwendung ist die Berechnung valider Konfidenzintervalle für Parameter der Population. In Abbildung 1 sind die Mittelwerte und das 95%-Konfidenzintervall von 20000 Bootstrap-Stichproben dargestellt, die aus einer nicht-normalverteilten Ausgangsstichprobe mit einem Mittelwert von x̅ = 2.75 und einer Standardabweichung von s = 1.45 gezogen wurden. 95 % der Mittelwerte aller gezogenen Bootstrapstichproben befinden sich zwischen 2.36 und 3.15.


Ausgelagerte Bildbeschreibung von Säulendiagramm Bootstrapping


Als non-parametrisches Verfahren ohne Verteilungsannahmen ist Bootstrapping in vielen Kontexten anwendbar, wie z.B. bei der Prüfung von indirekten Effekten bei linearen Strukturgleichungsmodellen. Eine wichtige Voraussetzung für die Anwendung der Bootstrap-Technik ist jedoch, dass die Ausgangsstichprobe repräsentativ für die Grundgesamtheit sein muss. Außerdem ist das Verfahren rechenintensiv, was besonders bei zunehmender Anzahl an Bootstrap-Stichproben berücksichtigt werden muss.



Videolink neu.PNG kkk Im Video wird die Bootstrap-Technik näher erläutert.

Simulationslink neu2.PNG kkk Die Methode des Bootstrappings lässt sich in der interaktiven Simulation mit verschiedenen Ausgangsstichproben und für verschiedene Stichprobengrößen und Konfidenzniveaus nachvollziehen.


Weiterführende Literatur

Manly, B.F. (2018). Randomization, bootstrap and Monte Carlo Methods in biology. Chapman and Hall/CRC

Rudolf, M. & Kuhlisch, W. (2020). Biostatistik. Eine Eine Einführung für Bio- und Umweltwissenschaftler (2. Aufl.). München: Pearson Studium. (Kapitel 6.4)