Aufgaben - Grundbegriffe Statistik 1

Aus eLearning - Methoden der Psychologie - TU Dresden
Zur Navigation springen Zur Suche springen

Der folgenden Bereich enthält Fragen zu Grundbegriffen der Statistik. Alle Fragen sind Multiple Choice Fragen, d.h. es können immer mehrere Antworten richtig sein. Klicken Sie zur Beantwortung einer Frage die korrekten Antwortmöglichkeiten an. Um Ihre Ergebnisse auszuwerten, wählen Sie bitte den Button "Speichern" am unteren Ende der Seite.

Für jede vollständig richtig beantwortete Frage erhalten Sie einen Punkt. Für falsche beantwortete Fragen werden Ihnen keine Punkte abgezogen. Sie können diese Einstellung jedoch beliebig verändern. Ihre Gesamtpunktzahl finden Sie am unteren Seitenende.


  

1 Der p-Wert stellt eine zentrale Größe beim Testen statistischer Hypothesen dar. Aber was gibt der p-Wert an?

p-Wert gibt an, welche Wahrscheinlichkeit des Auftretens eines Fehlers 1. Art – also dem Verwerfen der Nullhypothese, obwohl sie wahr ist – man zu akzeptieren bereit ist.
Der p-Wert gibt an, wie wahrscheinlich ein Stichprobenergebnis oder ein extremes, der Nullhypothese noch mehr widersprechendes Testergebnis ist, unter der Annahme, dass die Nullhypothese gilt.
Der p-Wert gibt an, welche Wahrscheinlichkeit des Auftretens eines Fehlers 2. Art an– also dem Annehmen der Alternativhypothese, obwohl die Nullhypothese gilt.
Der p-Wert gibt die Differenz des Stichprobenmittelwertes und des Mittelwerts der Grundgesamtheit, dividiert durch die Standardabweichung der Stichprobe und multipliziert mit der Wurzel der Stichprobengröße an.

2 Rahmen der Präsentation von Forschungsbefunden spielt häufig die Signifikanz von Ereignissen eine entscheidende Rolle. Unter welchen Bedingungen bezeichnet man ein Ergebnis als signifikant?

wenn gilt: p < α
wenn gilt: p > α
wenn gilt: t > p
wenn gilt: α > t

3 Der p-Wert wird bei der Auswertung statistischer Tests als wichtige Kenngröße eingesetzt, zum Beispiel beim t-Test gegen eine Konstante. Er bezieht sich auf eine gezogene Stichprobe und ist dabei von verschiedenen Parametern abhängig. Welche Parameter haben einen Einfluss auf die Größe des p-Wertes?

Standardabweichung
Stichprobengröße
Signifikanzniveau
Art der Fragestellung (einseitig oder zweiseitig)
Abweichung des Mittelwertes der Stichprobe vom Mittelwert der Grundgesamtheit

4 Der p-Wert wird bei der Auswertung statistischer Tests als wichtige Kenngröße eingesetzt, zum Beispiel beim t-Test gegen eine Konstante. Er bezieht sich auf eine gezogene Stichprobe und ist dabei von verschiedenen Parametern abhängig. Welche Aussagen über den Einfluss der Parameterwerte auf den p-Wert bei einseitiger Fragestellung (H0: μ ≤ μ0  ; H1: μ > μ0) sind richtig?

Je größer das Signifikanzniveau ist, desto kleiner ist der p-Wert.
Je größer der Wert der Abweichung des Mittelwertes der Stichprobe vom Mittelwert der Grundgesamtheit ist, desto kleiner ist der p-Wert.
Je größer die Standardabweichung ist, desto kleiner ist der p-Wert.
Je größer die Stichprobengröße ist, desto kleiner ist der p-Wert.

5 Der p-Wert wird bei der Auswertung statistischer Tests als wichtige Kenngröße eingesetzt, zum Beispiel beim t-Test gegen eine Konstante. Er bezieht sich auf eine gezogene Stichprobe und ist dabei von verschiedenen Parametern abhängig. Welche Aussagen über den Einfluss der Parameterwerte auf den p-Wert bei zweiseitiger Fragestellung (H0: μ = μ0  ; H1: μ ≠ μ0) sind richtig?

Je größer das Signifikanzniveau ist, desto kleiner ist der p-Wert.
Je kleiner der Betrag des Wertes der Abweichung des Mittelwertes der Stichprobe vom Mittelwert der Grundgesamtheit ist, desto größer ist der p-Wert.
Je größer die Standardabweichung ist, desto kleiner ist der p-Wert.
Je größer die Stichprobengröße ist, desto kleiner ist der p-Wert.

6 Die Durchführung statistischer Analysen führt häufig zur Ausgabe von Standardfehlern. Doch was versteht man unter einem Standardfehler?

Der Standardfehler stellt die Streuung innerhalb einer Stichprobe dar.
Der Standardfehler stellt die Wurzel der Varianz eines Stichprobenkennwertes dar.
Der Standardfehler stellt die Standardabweichung eines Stichprobenkennwertes dar.
Der Standardfehler stellt die Wurzel der Standardabweichung eines Stichprobenkennwertes dar.

7 Welche Formel kann zur Berechnung des Standardfehlers des Mittelwertes verwendet werden?

Der Standardfehler des Mittelwertes ergibt sich als Quotient aus der Standardabweichung der Grundgesamtheit und dem Mittelwert der Grundgesamtheit.
Der Standardfehler des Mittelwertes ergibt sich als Quotient aus der Standardabweichung der Grundgesamtheit und der Wurzel der Stichprobengröße.
Der Standardfehler des Mittelwertes ergibt sich als Quotient aus der Wurzel des Mittelwertes der Grundgesamtheit und der Stichprobengröße.
Der Standardfehler des Mittelwertes ergibt sich als Quotient aus der Standardabweichung der Grundgesamtheit und der Wurzel des Mittelwertes der Grundgesamtheit.

8 Der Standardfehler eines Stichprobenkennwertes ist von verschiedenen Parametern abhängig. Welche Parameter haben einen Einfluss auf die Größe des Standardfehlers des Mittelwertes?

Varianz der Grundgesamtheit
Mittelwert der Grundgesamtheit
Modalwert der Grundgesamtheit
Stichprobenumfang

9 Welche Aussagen bezüglich des Standardfehlers und des Einflusses verschiedener Parameter auf die Größe des Standardfehlers treffen zu?

Je kleiner die Varianz eines Stichprobenkennwertes ist, desto kleiner ist der Standardfehler dieses Stichprobenkennwertes.
Je kleiner der Standardfehler ist, desto genauer kann der unbekannte Parameter geschätzt werden.
Je kleiner der Stichprobenumfang ist, desto kleiner ist der Standardfehler.
Der Stichprobenumfang hat keinen Einfluss auf die Größe des Standardfehlers.

10 Die Durchführung von statistischen Analysen führt häufig zur Ausgabe von Standardfehlern. Wozu können Standardfehler verwendet werden?

Berechnung von Teststatistiken
Berechnung von Konfidenzintervallen
Berechnung von Regressionskoeffizienten
Berechnung von Populationsmittelwerten
Berechnung von Schätzfehlern

11 Welche Größen gehen in die Berechnung eines t-Wertes beim Test gegen eine Konstante ein?

Stichprobengröße
Mittelwert der Stichprobe
Median der Stichprobe
Standardabweichung der Stichprobe

12 Von welchem Parameter ist die Form der t-Verteilung abhängig?

vom Median der Stichprobe
von den Freiheitsgraden
vom Mittelwert der Grundgesamtheit
von der Art der Fragestellung (einseitig oder zweiseitig)

13 In welchem Verhältnis stehen die t-Verteilung und die Standardnormalverteilung?

Die t-Verteilung ist höher und streut weniger breit als die Standardnormalverteilung.
Die t-Verteilung ist niedriger und streut breiter als die Standardnormalverteilung.
Mit sinkender Stichprobengröße nähert sich die Standardnormalverteilung der t-Verteilung an.
Mit steigender Stichprobengröße nähert sich die t-Verteilung der Standardnormalverteilung an.

14 Unter welchen Voraussetzungen kann die t-Verteilung genutzt werden?

Die Varianz der Grundgesamtheit ist nicht bekannt.
Die Grundgesamtheit ist normalverteilt.
Die Stichprobenziehung erfolgt nicht zufällig.
Die Grundgesamtheit ist nicht normalverteilt, aber die Stichprobe ist sehr groß.

15 Welche Eigenschaften der t-Verteilung sind immer gegeben?

Die Fläche unter der Kurve ist 1.
Der Mittelwert der Verteilung ist 0.
Die Verteilung hat für sehr große t-Werte den exakten Wert 0.
Die Standardabweichung ist 1.

16 Welche Größen fließen in die Berechnung des F-Wertes ein?

Quadratsumme innerhalb und zwischen den Gruppen
Mittelwert der Grundgesamtheit
Ausgewählte Quantile der F-Verteilung
Freiheitsgrade innerhalb und zwischen den Gruppen

17 Wie werden die Freiheitsgrade zwischen den Gruppen berechnet?

Gesamtanzahl der Messwerte minus 1
Anzahl der Gruppen minus 1
1 minus Anzahl der Gruppen
Gruppengröße minus 1

18 Wie werden die Freiheitsgrade innerhalb der Gruppen berechnet?

Gesamtanzahl der Messwerte durch Gruppengröße
Gruppengröße minus Anzahl der Gruppen
Gruppengröße minus 1
Gesamtanzahl der Messwerte minus Anzahl der Gruppen

19 Welche Eigenschaften der F-Verteilung sind immer gegeben?

Die F-Verteilung entspricht bei kleinen Stichprobenumfängen und höchstens 5 Gruppen einer t-Verteilung.
F-verteilte Zufallsvariablen enthalten keine negativen Werte.
Die F-Verteilung ist symmetrisch.
Die Verteilungsfunktion ist monoton fallend.

20 In welchen Fällen wird die F-Verteilung verwendet?

im Rahmen des nichtparametrischen U-Tests
Prüfung der Signifikanz einzelner Regressionskoeffizienten bei der linearen Regression
Prüfung der Signifikanz eines Gesamtmodells bei der linearen Regression
Prüfung der Signifikanz von Mittelwertsunterschieden mehrerer Gruppen durch Varianzanalyse

21 Welche der folgenden Definitionen zur Beschreibung der Teststärke ist korrekt?

Die Teststärke gibt an, wie wahrscheinlich es ist, eine korrekte Entscheidung zugunsten der Nullhypothese zu treffen.
Die Teststärke gibt an, wie hoch die Wahrscheinlichkeit ist, die Alternativhypothese anzunehmen, obwohl die Nullhypothese gilt.
Die Teststärke gibt an, wie wahrscheinlich es ist, eine korrekte Entscheidung zugunsten der Alternativhypothese zu treffen.
Die Teststärke gibt an, welche Wahrscheinlichkeit des Verwerfens der Nullhypothese, obwohl sie wahr ist, man zu akzeptieren bereit ist.

22 Welche der folgenden Formeln kann zur Berechnung der Teststärke verwendet werden?

β-1
1-α
1-β
α-1

23 Gegeben seien die Mittelwertverteilungen von Zufallsziehungen aus zwei Grundgesamtheiten, welche hinsichtlich ihres Mittelwertes untersucht werden sollen. Welche der folgenden Aussagen, bezüglich der Effekte verschiedener Einflussgrößen auf die Größe der Teststärke, treffen in dieser Situation zu?

Je kleiner der Wert des Signifikanzniveaus α, desto größer ist die Teststärke.
Je kleiner die Streuung des Merkmals in den Grundgesamtheiten, desto größer ist die Teststärke.
Je größer der Mittelwertunterschied der Grundgesamtheiten, desto größer ist die Teststärke.
Je kleiner die Stichprobengröße aller Zufallsziehungen, desto kleiner ist die Teststärke.

24 Welche der folgenden Aussagen bezüglich des Zusammenhangs zwischen der Teststärke, dem Signifikanzniveau α und der Wahrscheinlichkeit des Auftretens eines Fehlers 2. Art treffen zu?

Je größer die Wahrscheinlichkeit eines Fehlers 2. Art ist, desto kleiner ist die Teststärke.
Je größer das Signifikanzniveau ist, desto größer ist die Wahrscheinlichkeit für einen Fehler 2. Art.
Je größer die Teststärke, desto kleiner ist das Signifikanzniveau.
Die Höhe des Signifikanzniveaus hat keinen Einfluss auf die Wahrscheinlichkeit des Auftretens eines Fehlers 2. Art und die Größe der Teststärke.

25 Welche der folgenden Möglichkeiten zur Erhöhung der Teststärke sind in praktischen Untersuchungen möglich und in den meisten Fällen realistisch umsetzbar?

Erhöhung des Stichprobenumfang
Verringerung der Varianz innerhalb der Grundgesamtheit
Erhöhung der Varianz innerhalb der Grundgesamtheit
Erhöhung des Mittelwertunterschiedes zwischen der Nullhypothesen- und Alternativhypothesenverteilung

26 Welche der folgenden Aussagen über die Eigenschaften einer zufällig aus einer normalverteilten Grundgesamtheit gezogenen Stichprobe sind wahr?

Die Standardabweichung der Stichprobe ist umso größer, je größer die Stichprobe ist.
Die erwartete Standardabweichung der Stichprobe ist umso größer, je größer die Standardabweichung der Grundgesamtheit ist.
Die Standardabweichung der Stichprobe entspricht näherungsweise der Varianz der Grundgesamtheit.
Der erwartete Mittelwert der Stichprobe entspricht dem Mittelwert der Grundgesamtheit.

27 Welcher Faktor ist entscheidend bei der Bestimmung des optimalen Stichprobenumfangs vor der Erhebung?

die Teststärke
der Mittelwert der Stichprobe
der Mittelwert der Grundgesamtheit
der p-Wert

28 Wann und mit welchem Zweck wird eine A-priori-Poweranalyse durchgeführt?

nach der Datenauswertung mit dem Ziel der Bestimmung der Teststärke
vor der Datenerhebung mit dem Ziel der Bestimmung des Alphafehlers.
vor der Datenauswertung mit dem Ziel der Bestimmung des Signifikanzniveaus
vor der Datenerhebung mit dem Ziel der Bestimmung des notwendigen Stichprobenumfangs

29 Welcher Wert wird oft als Minimalwert für eine gute Teststärke betrachtet?

100%
80%
50%
30%

30 Um eine Teststärke von 80% zu erreichen, muss der Stichprobenumfang umso größer sein, …

je kleiner die Varianz in der Grundgesamtheit ist.
je größer der Effekt (z.B. Mittelwertsunterschied) ist.
je niedriger das Signifikanzniveau ist.
je größer die Standardabweichung der Grundgesamtheit ist.

31 Welche der folgenden Bezeichnungen können synonym zum Begriff des Konfidenzintervalls verwendet werden?

Effektbereich
Irrtumsniveau
Erwartungsbereich
Vertrauensintervall

32 Welche der folgenden Definitionen beschreiben den Begriff „Konfidenzintervalls“ korrekt?

Ein Konfidenzintervall ist definiert als die Wahrscheinlichkeit, dass sich bei Ziehung einer Zufallsstichprobe aus der interessierenden Grundgesamtheit die Mittelwerte dieser Grundgesamt und der zugehörigen Stichprobe um maximal eine Standardabweichung unterscheiden.
Ein Konfidenzintervall stellt die Standardabweichung eines Stichprobenkennwertes dar.
Ein Konfidenzintervall gibt den Bereich an, welcher bei vielfacher Wiederholung eines Zufallsexperiments mit einer gewissen Wahrscheinlichkeit die wahre Lage eines interessierenden Parameters einschließt.
Ein Konfidenzintervall ist definiert als die Wahrscheinlichkeit, dass bei vielfacher Wiederholung eines Zufallsexperiments in jedem Durchgang die wahre Lage eines interessierenden Parameters durch einen im Voraus definierten Bereich eingeschlossen wird.

33 Welche der folgenden Aussagen bezüglich des Konfidenzniveaus treffen zu?

Das Konfidenzniveau gibt die Wahrscheinlichkeit dafür an, dass das Konfidenzintervall die wahre Lage des interessierenden Populationsparameters nicht einschließt.
Die Höhe des Konfidenzniveaus wird durch die Stichprobengröße limitiert.
Das Konfidenzniveau gibt die Wahrscheinlichkeit dafür an, dass das Konfidenzintervall die wahre Lage des interessierenden Populationsparameters einschließt.
Vor der Ermittlung des Konfidenzintervalls wird das Konfidenzniveau durch den Anwender definiert.

34 Wir führen eine Studie zur Untersuchung des IQ in der Allgemeinbevölkerung durch. Diese Variable besitzt in unserer Population den bekannten Mittelwert von μ = 100 und eine Standardabweichung von 15. Die Verteilung der Werte folgt einer Normalverteilung. Nun ziehen wir aus dieser Grundgesamtheit 600 Stichproben und berechnen das Konfidenzintervall des Mittelwertes dieser Stichproben bei einem Konfidenzniveau von 90 %. Ungefähr wie viele Konfidenzintervalle der gezogenen Stichproben werden den wahren Populationsparameter von μ = 100 einschließen?

410
570
540
573

35 Wir möchten die Entstehung eines Konfidenzintervalls am Beispiel des arithmetischen Mittelwertes simulieren. Dazu ziehen wir aus einer Grundgesamtheit wiederholt Stichproben und ermitteln das Konfidenzintervall des Mittelwertes dieser Stichproben bei einem Konfidenzniveau von 95%. Welche der folgenden Größen beeinflussen, welcher Anteil der Konfidenzintervalle der Stichproben den wahren Mittelwert der Grundgesamt enthalten?

Konfidenzniveau
Höhe des Mittelwertes der Grundgesamtheit
Stichprobengrößen
Standardabweichung der Werte der Grundgesamtheit