Aufgaben - Multiple lineare Regression

Aus eLearning - Methoden der Psychologie - TU Dresden
Zur Navigation springen Zur Suche springen

Der folgenden Bereich enthält Fragen zur multiplen linearen Regression. Alle Fragen sind Multiple Choice Fragen, d.h. es können immer mehrere Antworten richtig sein. Klicken Sie zur Beantwortung einer Frage die korrekten Antwortmöglichkeiten an. Um Ihre Ergebnisse auszuwerten, wählen Sie bitte den Button "Speichern" am unteren Ende der Seite.

Für jede vollständig richtig beantwortete Frage erhalten Sie einen Punkt. Für falsche beantwortete Fragen werden Ihnen keine Punkte abgezogen. Sie können diese Einstellung jedoch beliebig verändern. Ihre Gesamtpunktzahl finden Sie am unteren Seitenende.


  

1 1. Welche der folgenden Definitionen kann zur Beschreibung einer multiplen linearen Regression verwendet werden?

Die multiple lineare Regression ist ein statistisches Verfahren, mit dem versucht wird, mehrere abhängige metrische Variablen durch eine oder mehrere unabhängige Variablen zu erklären.
Die multiple lineare Regression ist ein statistisches Verfahren, mit dem versucht wird, mehrere beobachtete abhängige ordinale oder kategoriale Variablen durch mehrere unabhängige Variablen zu erklären.
Die multiple lineare Regression ist ein statistisches Verfahren, mit dem versucht wird, eine beobachtete abhängige metrische Variable durch mehrere unabhängige Variablen zu erklären.
Die multiple lineare Regression ist ein statistisches Verfahren, mit dem versucht wird, eine beobachtete abhängige ordinale oder kategoriale Variable durch mehrere unabhängige Variablen zu erklären.

2 2. Mithilfe welches allgemeinen Schätzprinzips können die Regressionskoeffizienten im Rahmen einer multiplen linearen Regression bestimmt werden?

Methode der multiplen Quadrate
Methode der kleinsten Quadrate
Methode der größten Quadrate
Methode der multiplen linearen Quadrate

3 3. Welche Voraussetzungen sollten für die Durchführung einer multiplen linearen Regressionsanalyse erfüllt sein?

Gültigkeit des linearen Modells
Festlegung von Prädiktoren und Kriterium
Homoskedastizität
Statistische Abhängigkeit der Modellfehler
Normalverteilung der Modellfehler

4 4. Was bedeutet Homoskedastizität?

Mittelwerte der Modellfehler sind nicht normalverteilt
Varianzen der Modellfehler sind unabhängig von den konkreten Werten der Prädiktoren gleich
Mittelwerte der Modellfehler sind normalverteilt
Varianzen der Modellfehler sind in Abhängigkeit der konkreten Werten der Prädiktoren verschieden
5. Die folgenden Abbildungen stellen eine grafische Gegenüberstellung der z-standardisierten Residuen und der z-standardisierten Schätzungen für die Kriteriumsvariablen einer multiplen linearen Regression dar. Welche der Abbildungen liefern einen Hinweis auf Heteroskedastizität?




















5