Aufgaben - Synthetische Modelle

Aus eLearning - Methoden der Psychologie - TU Dresden
Wechseln zu: Navigation, Suche

Der folgenden Bereich enthält Fragen zu synthetischen und explanativen Modellen. Alle Fragen sind Multiple Choice Fragen, d.h. es können immer mehrere Antworten richtig sein. Klicken Sie zur Beantwortung einer Frage die korrekten Antwortmöglichkeiten an. Um Ihre Ergebnisse auszuwerten, wählen Sie bitte den Button "Speichern" am unteren Ende der Seite.

Für jede vollständig richtig beantwortete Frage erhalten Sie einen Punkt. Für falsche beantwortete Fragen werden Ihnen keine Punkte abgezogen. Sie können diese Einstellung jedoch beliebig verändern. Ihre Gesamtpunktzahl finden Sie am unteren Seitenende.








  

1

Welche Aussagen zum Verarbeitungszyklus in Soar sind richtig?

Bei jeder Bewältigung eines Unterziels wird eine neue Regel erstellt.
Wenn kein beim Evaluationsprozess kein bester Operator gefunden werden kann, kehrt das System in den Ausgangszustand zurück.
Wenn der Arbeitsspeicher bestimmte Bedingungen von Produktionsregeln erfüllt, schlagen diese die Anwendung bestimmter Operatoren vor.

2

Welche Aussagen zur Funktionsweise von kognitiven Architekturen sind richtig?

Man kann damit Daten wie Reaktionslatenzen und Genauigkeit simulieren.
Die Modelle innerhalb von kognitiven Architekturen sind nicht generalisierbar.
Anwender können ihre Experimente in Form von Programmen in die Architekturen einbauen und testen.
Kognitive Architekturen funktionieren ähnlich wie eine Programmiersprache.

3

Über welche dieser Fähigkeiten verfügen neuronale Netze (sowohl künstliche als auch biologische)?

lokale, ortsspezifische Speicherung von Mustern
Generalisierung von Bekanntem auf Unbekanntes
Lernen und Selbstorganisation
Toleranz gegenüber Fehlern im Input

4

Wodurch wird die Aktivierung der Knoten in dynamischen Feldern beeinflusst?

externer Input
Aktivierung des betreffenden Knotens selbst
Aktivierung der Nachbarknoten
Ruhepotential

5

Welche Aussagen zu den Funktionsbausteinen von Soar sind richtig?

Produktionsregeln können Operatoren vorschlagen und bewerten.
„Chunking“ bezeichnet die Gruppierung von Operatoren in eine funktionale Kategorie.
Der Regelspeicher greift auf das im Arbeitsspeicher kodierte prozedurale und Faktenwissen zurück.

6

Welche der folgenden Aussagen zur Agentenbasierten Modellierung treffen zu?

Agentenbasierte Modellierung nutzt vieler kleine autonome Einheiten, welche keine Entscheidungs- oder Handlungsmöglichkeiten besitzen.
Agentenbasierte Modellierung wird zur Untersuchung komplexer Systeme verwendet.
Agenten bringen durch Interaktion miteinander ein bestimmtes Systemverhalten hervor.
Agentenbasierte Modellierung kann keine Erklärungsansätze für soziale Phänomene wie z.B. Massenpanik bieten.

7

Wovon ist die Gewichtsveränderung bei der Deltaregel abhängig?

Aktivierung des Inputknotens
Differenz zwischen gewünschtem und beobachtetem Output
Lernrate
Belohnungssignal

8

Welche dieser Lernregeln gehören zum überwachten Lernen?

Backpropagation-Regel
Delta-Regel
Hebb’sche Lernregel
Competitive Learning

9

Was versteht man unter Populationsvektorkodierung bei dynamischen neuronalen Feldern?

Ein Knoten kodiert eine Population von Eigenschaften.
Eine Population von Knoten kodiert gemeinsam eine Eigenschaftsdimension.
Jeder Knoten hat eine „präferierte“ Eigenschaftsdimension.
Jeder Knoten hat eine „präferierte“ Eigenschaftsausprägung.

10

Welche der folgenden Netztypen besitzen keine Rückkopplungen?

Perzeptron
Kohonen-Netze
Dynamische neuronale Felder
Attraktorennetze

11

Synthetische und Explanative Modelle werden zur Modellierung komplexer Prozesse verwendet. Der Mensch stellt ein überaus komplexes System dar, dessen Verhalten mittels gesonderter Modelle aus verschiedenen Perspektiven analysiert werden kann. Welche Aussagen über diese verschiedenen Betrachtungsebenen sind zutreffend?

Individuumsorientierte Modelle beschäftigen sich mit der Entstehung menschlichen Verhaltens durch das Zusammenspiel interner Prozesse.
Sozialorientierte Modelle beschäftigen sich mit der Entstehung menschlichen Verhaltens durch das Zusammenspiel von Personen.
Individuumsorientierte Modelle untersuchen Inter-Agenten-Prozesse.
Sozialorientierte Modelle untersuchen Intra-Agenten-Prozesse.

12

Welche der folgenden Merkmale besitzen Synthetische und Explanative Modelle?

Entwicklung erfolgt durch Abstraktion über Daten bestimmter Fälle oder prinzipienorientiert ohne Daten
Modelle verhalten sich, d.h. sie repräsentieren nicht nur abstrakte Zahlenketten, sondern können in eine Verbindung zur (virtuellen) Außenwelt gestellt werden
Modelle überraschen selten, da ihre Komplexität durch die Modellierung angemessen reduziert werden muss
Modelle dienen der Generalisierung und Theoriebildung

13

Welche Aussagen über Attraktorennetze sind zutreffend?

Attraktoren sind stabile Werte, zu denen die Gewichte immer wieder zurückkehren.
Das Lernen erfolgt nach dem „Winner-takes-all“-Prinzip, sodass jeweils nur die Gewichte des am stärksten aktiven Knotens aktualisiert werden.
Die Knoten einer Schicht besitzen laterale Rückkopplungen.
Durch das Lernen bilden sich stabile Koaktivierungsmuster von Knoten.

14

Welche Aussagen zum Konzept der emergenten (oder auch aufsteigenden) Level, welches bei der Modellierung zu beachten ist, treffen zu?

Sowohl übergeordnete als auch untergeordnete Level folgen denselben Regeln.
Zusammensetzung der höheren Level aus den Objekten unterliegender Level ändert sich mit der Zeit.
Elemente eines übergeordneten Levels stellen die reine Ansammlung von Objekten untergeordneter Level dar.
Elemente eines übergeordneten Levels entstehen durch Interaktionen von Elementen untergeordneter Level.

15

Welcher logische Operator lässt sich nicht mit einem einschichtigen Perzeptron umsetzen?

exklusives Oder
Nicht
inklusives Oder
Und

16

Welche Probleme und Schwierigkeiten treten beim Reinforcement-Lernen auf?

Der Lernvorgang findet gänzlich ungesteuert statt.
Reinforcement-Lernen dauert oft länger als überwachtes Lernen.
Das Lernprinzip kommt in der Realität nicht vor.
Belohnungen treten oft zeitversetzt zu Handlungen auf.

17

Welche Art des Lernens lässt sich mit Hebb’schem Lernen erklären?

Instruktionslernen
Operantes Konditionieren
Habituation
Klassisches Konditionieren

18

Die kognitive Architektur ACT-R besteht aus folgenden Modulen:

Introspektives Modul
Deklaratives Modul
Manuelles Modul
Prozedurales Modul
Ziel Modul

19

Welche Lernregel ähnelt der klassischen Perzeptron-Lernregel am stärksten?

Deltaregel
Competitive Learning
Backpropagation
Hebb’sches Lernen

20

Welches dieser Konzepte ist kein zentraler Baustein dynamischer neuronaler Felder?

laterale Inhibition
Entwicklung von Aktivierung über die Zeit
kontinuierliche topologische Repräsentationen
Lernen durch Änderung des Interaktionskernels

21

Was hat beim Hebb’schen Lernen keinen Einfluss auf die Gewichtsveränderung?

Fehlerterm
Lernrate
Aktivierung des Outputknotens
Aktivierung des Inputknotens

22

Um welche Form des Lernens handelt es sich, wenn ein Kind versucht, das richtige Puzzleteil zu finden, indem es verschiedene Teile ausprobiert, um zu sehen, ob sie passen?

reinforcement learning
supervised learning
error-driven learning
unsupervised learning

23

Was versteht man unter stigmergischen Interaktionen?

indirekte Form der Interaktion, bei welcher Agenten ihre Position verändern
direkte Form der Interaktion, bei welcher Agenten die Eigenschaft eines anderen Agenten verändern
indirekte Form der Interaktion, bei welcher Agenten ihre lokale Umwelt verändern
direkte Form der Interaktion, bei welcher Agenten die Position eines anderen Agenten verändern

24

Was beeinflusst die Gewichtsveränderung bei Nutzung der Backpropagation-Regel?

Lernrate
statistische Regularitäten im Inputmuster
Schwellwert
Beitrag eines Gewichts zum Gesamtfehler

25

Was versteht man unter impliziter Rekonstruktion des Inputs als Trainingssignal?

Der Lerner generiert eine implizite Erwartung des korrekten Outputs als Assoziation zum aktuellen Input.
Ein externer „Lehrer“ gibt einen Output vor.
Der Lerner generiert eine implizite Erwartung über die Konsequenz einer motorischen Aktion.
Der Lerner generiert eine implizite Erwartung des korrekten Outputs als Kopie des aktuellen Inputs.

26

Welche Aussagen zum zentralen Produktionssystem der kognitiven Architektur ACT-R sind richtig?

Reihenfolge der Verarbeitungsschritte: Konflikterkennung, Mustererkennung und Ausführung der geplanten Aktionen.
Über Produktionsregeln werden diese Informationen von den Modulen an das Produktionssystem weitergeleitet.
Produktionsregeln aktualisieren u.a. die Zwischenspeicher für deren weitere Nutzung im nächsten Zyklus.
Das Produktionssystem kann nur auf eine begrenzte Menge an Informationen (Chunks) zurückgreifen.

27

Welche Verbindungsarten existieren im abgebildeten Netz?

Direktindirekt.png

indirekte Rückkopplungen
direkte Rückkopplungen
laterale Rückkopplungen
Feed-forward-Verbindungen

28

Was versteht man bei künstlichen neuronalen Netzen unter dem Netzinput?

das Aktivitätsmuster der Inputschicht
die Aktivierung, die ein Knoten als Input für den nächsten Knoten weitergibt
die Aktivität eines einzelnen Inputknotens
den aufsummierten und gewichteten Input, den ein Knoten empfängt

29

Welches Phänomen versucht das Konzept emergenter Level zu erklären?

das Verhalten einzelner Teile oder Individuen einer Gesamtheit gleicht sich innerhalb einer bestimmten Zeitspanne dem Gesamtsystem an, welche vom Ausmaß der Bewegung der einzelnen Individuen abhängig ist
einzelne Teile oder Individuen einer Gesamtheit können ein anderes Verhalten als das Gesamtsystem zeigen
das Verhalten einzelner Teile oder Individuen einer Gesamtheit gleicht sich innerhalb sehr kurzer Zeit dem Verhalten des Gesamtsystems an
das Verhalten einzelner Teile oder Individuen einer Gesamtheit gleicht sich innerhalb einer bestimmten Zeitspanne dem Gesamtsystem an, welche von der Anzahl der Elemente des Gesamtsystems abhängig ist

30

Welche Aussagen beschreiben Reinforcement-Lernen in künstlichen neuronalen Netzen?

Das Netz erhält eine Information über die Richtigkeit seines Outputs.
Es wird kein korrekter Output vorgegeben.
Das Lernen wird durch Vorgabe eines korrekten Outputs gesteuert.
Das Grundprinzip des Reinforcement-Lernens entspricht dem operanten Konditionieren.

31

Wo liegen Beschränkungen der Deltaregel?

Sie berücksichtigt den Inputknoten nicht.
Das Kennen der exakten Outputaktivierungen ist nicht biologisch plausibel.
Sie ist sehr rechenaufwändig.
Sie eignet sich nicht für mehrschichtige Netze.

32

Was passiert in der Trainingsphase künstlicher neuronaler Netze?

Inputmuster werden präsentiert.
Eine Lernregel wird angewendet.
Gewichte verändern sich.
Die Generalisierungsfähigkeit des Netzwerks wird überprüft.

33

Aus komplexen Systemen resultieren komplexe Verhaltensmuster. Welche Aussagen über zentrale Themen der Agentenbasierten Modellierung treffen zu?

Agentenbasierte Modelle erlauben keine Beschreibung komplexer und räumlicher und zeitlicher Muster.
Agentenbasierte Modelle erlauben die Modellierung des Prozesses sozialer Kooperation.
Agentenbasierte Modelle erlauben die Modellierung chemischer oder biologischer Interaktionen von Organismen oder einzelnen Zellen.
Agentenbasierte Modelle erlauben die Modellierung des Prozesses sozialer Ansteckung durch Schwellenwertmodelle.

34

ACT-R (Adaptive Control of Thought – Rational) ermöglicht…

rationale Gedankenkontrolle bei Menschen durchzuführen.
die Integration zentraler Grundmechanismen menschlicher Kognition in ein Computerprogramm.
die selbstständige Implementierung von eigenen Modellen durch eine Standalone-Anwendung.
die Überprüfung von Theorien durch den Vergleich simulierter und empirischer Verhaltensdaten.

35

Welche Aussagen über Kontextknoten in einfachen rekurrenten Netzen sind zutreffend?

Sie können die Aktivierung einer Schicht für einen Verarbeitungsschritt zwischenspeichern.
Sie ermöglichen das Lernen zeitlicher Sequenzen.
Sie sind immer mit der Hiddenschicht verbunden.
Sie sind stets über unveränderliche Gewichte in beide Richtungen mit dem Rest des Netzes verbunden.

36

Welche Aussagen über Agenten, deren Verhalten im Rahmen eines Agentenmodells beschrieben wird, treffen zu?

sind in eine unbegrenzte 2D oder 3D Umgebung eingebettet
besitzen nur eine begrenzte Informationsmenge und Rationalität
handeln nach eigenen Zielen
handeln aktiv und reaktiv

37

Was ist die Grundidee der Backpropagation-Regel?

Neuronale Netze lernen unüberwacht durch Selbstorganisation.
In mehrschichtigen Netzen wird für jede Schicht im Vorhinein ein korrekter Output definiert, um überwachtes Lernen zu ermöglichen.
Belohnungsinformationen werden schichtweise von der Outputschicht zurückgesendet, um Reinforcement-Lernen zu ermöglichen.
Überwachtes Lernen in mehrschichtigen Netzen wird realisiert, indem Fehlerterme von der Outputschicht wieder zurückgesendet werden.

38

Agentenmodelle werden anhand ihrer Abstraktionsniveaus in unterschiedliche Gruppen eingeteilt. Welche Aussagen über diese Gliederung und die verschiedenen Gruppen von Modellen treffen zu?

Ein Nachteil idealisierter Modelle ist, dass sie aufgrund von unzureichend eingeschränkten freien Parametern zu viele mögliche Outcomes vorhersagen können.
Man unterscheidet idealisierte und reduzierte Modelle.
Man unterscheidet idealisierte und detailgetreue Modelle.
Idealisierte Modelle versuchen die Realität auf ihre wesentliche funktionelle Essenz zu reduzieren.

39

Welche Möglichkeiten der Modellierung von Synthetischen und Explanativen Modellen werden angewandt?

Modellierung auf Basis bekannter Strukturen
Modellierung auf Basis existierender Theorien
Modellierung auf Basis struktureller Spekulationen
Modellierung auf Basis innovativer Vorstellungen

40

Der Sinn von kognitiven Architekturen besteht darin, ...

die Struktur eines spezifischen kognitiven Prozesses isoliert zu modellieren.
mehrere unterschiedliche kognitive Aufgaben modellieren und bearbeiten zu können.
grundlegende Mechanismen menschlicher Kognition integriert zu beschreiben.
Theorie und deren komputationale Realisierung zu integrieren.

41

Im Vergleich zu ACT-R…

hat Soar kein separates Arbeitsgedächtnis.
ist deklaratives Wissen bei Soar in Form von Chunks abgespeichert.
gibt es bei Soar mehrere Mechanismen, neues Wissen zu erwerben.
ist auch in Soar prozedurales Wissen in einem Regelspeicher abgelegt.

42

Welche der folgenden Merkmale besitzen komplexe Systeme?

Pfadunabhängigkeit
Emergenz
Selbstorganisation
Linearität

43

Welche der folgenden Merkmale besitzen komplexe Systeme?

Pfadunabhängigkeit
Linearität
Selbstorganisation
Emergenz