Aufgaben - Synthetische Modelle

Aus eLearning - Methoden der Psychologie - TU Dresden
Zur Navigation springen Zur Suche springen

Der folgenden Bereich enthält Fragen zu synthetischen und explanativen Modellen. Alle Fragen sind Multiple Choice Fragen, d.h. es können immer mehrere Antworten richtig sein. Klicken Sie zur Beantwortung einer Frage die korrekten Antwortmöglichkeiten an. Um Ihre Ergebnisse auszuwerten, wählen Sie bitte den Button "Speichern" am unteren Ende der Seite.

Für jede vollständig richtig beantwortete Frage erhalten Sie einen Punkt. Für falsche beantwortete Fragen werden Ihnen keine Punkte abgezogen. Sie können diese Einstellung jedoch beliebig verändern. Ihre Gesamtpunktzahl finden Sie am unteren Seitenende.


  

1 Welche Aussagen zum Verarbeitungszyklus in Soar sind richtig?

Wenn der Arbeitsspeicher bestimmte Bedingungen von Produktionsregeln erfüllt, schlagen diese die Anwendung bestimmter Operatoren vor.
Wenn kein beim Evaluationsprozess kein bester Operator gefunden werden kann, kehrt das System in den Ausgangszustand zurück.
Bei jeder Bewältigung eines Unterziels wird eine neue Regel erstellt.

2 Welche Aussagen zur Funktionsweise von kognitiven Architekturen sind richtig?

Kognitive Architekturen funktionieren ähnlich wie eine Programmiersprache.
Man kann damit Daten wie Reaktionslatenzen und Genauigkeit simulieren.
Anwender können ihre Experimente in Form von Programmen in die Architekturen einbauen und testen.
Die Modelle innerhalb von kognitiven Architekturen sind nicht generalisierbar.

3 Über welche dieser Fähigkeiten verfügen neuronale Netze (sowohl künstliche als auch biologische)?

Generalisierung von Bekanntem auf Unbekanntes
Lernen und Selbstorganisation
lokale, ortsspezifische Speicherung von Mustern
Toleranz gegenüber Fehlern im Input

4 Wodurch wird die Aktivierung der Knoten in dynamischen Feldern beeinflusst?

Ruhepotential
Aktivierung der Nachbarknoten
externer Input
Aktivierung des betreffenden Knotens selbst

5 Welche Aussagen zu den Funktionsbausteinen von Soar sind richtig?

Der Regelspeicher greift auf das im Arbeitsspeicher kodierte prozedurale und Faktenwissen zurück.
Produktionsregeln können Operatoren vorschlagen und bewerten.
„Chunking“ bezeichnet die Gruppierung von Operatoren in eine funktionale Kategorie.

6 Welche der folgenden Aussagen zur Agentenbasierten Modellierung treffen zu?

Agentenbasierte Modellierung kann keine Erklärungsansätze für soziale Phänomene wie z.B. Massenpanik bieten.
Agentenbasierte Modellierung wird zur Untersuchung komplexer Systeme verwendet.
Agentenbasierte Modellierung nutzt vieler kleine autonome Einheiten, welche keine Entscheidungs- oder Handlungsmöglichkeiten besitzen.
Agenten bringen durch Interaktion miteinander ein bestimmtes Systemverhalten hervor.

7 Wovon ist die Gewichtsveränderung bei der Deltaregel abhängig?

Belohnungssignal
Differenz zwischen gewünschtem und beobachtetem Output
Aktivierung des Inputknotens
Lernrate

8 Welche dieser Lernregeln gehören zum überwachten Lernen?

Competitive Learning
Hebb’sche Lernregel
Backpropagation-Regel
Delta-Regel

9 Was versteht man unter Populationsvektorkodierung bei dynamischen neuronalen Feldern?

Ein Knoten kodiert eine Population von Eigenschaften.
Jeder Knoten hat eine „präferierte“ Eigenschaftsausprägung.
Jeder Knoten hat eine „präferierte“ Eigenschaftsdimension.
Eine Population von Knoten kodiert gemeinsam eine Eigenschaftsdimension.

10 Welche der folgenden Netztypen besitzen keine Rückkopplungen?

Perzeptron
Kohonen-Netze
Dynamische neuronale Felder
Attraktorennetze

11 Synthetische und Explanative Modelle werden zur Modellierung komplexer Prozesse verwendet. Der Mensch stellt ein überaus komplexes System dar, dessen Verhalten mittels gesonderter Modelle aus verschiedenen Perspektiven analysiert werden kann. Welche Aussagen über diese verschiedenen Betrachtungsebenen sind zutreffend?

Sozialorientierte Modelle beschäftigen sich mit der Entstehung menschlichen Verhaltens durch das Zusammenspiel von Personen.
Sozialorientierte Modelle untersuchen Intra-Agenten-Prozesse.
Individuumsorientierte Modelle beschäftigen sich mit der Entstehung menschlichen Verhaltens durch das Zusammenspiel interner Prozesse.
Individuumsorientierte Modelle untersuchen Inter-Agenten-Prozesse.

12 Welche der folgenden Merkmale besitzen Synthetische und Explanative Modelle?

Modelle verhalten sich, d.h. sie repräsentieren nicht nur abstrakte Zahlenketten, sondern können in eine Verbindung zur (virtuellen) Außenwelt gestellt werden
Modelle überraschen selten, da ihre Komplexität durch die Modellierung angemessen reduziert werden muss
Entwicklung erfolgt durch Abstraktion über Daten bestimmter Fälle oder prinzipienorientiert ohne Daten
Modelle dienen der Generalisierung und Theoriebildung

13 Welche Aussagen über Attraktorennetze sind zutreffend?

Attraktoren sind stabile Werte, zu denen die Gewichte immer wieder zurückkehren.
Durch das Lernen bilden sich stabile Koaktivierungsmuster von Knoten.
Die Knoten einer Schicht besitzen laterale Rückkopplungen.
Das Lernen erfolgt nach dem „Winner-takes-all“-Prinzip, sodass jeweils nur die Gewichte des am stärksten aktiven Knotens aktualisiert werden.

14 Welche Aussagen zum Konzept der emergenten (oder auch aufsteigenden) Level, welches bei der Modellierung zu beachten ist, treffen zu?

Elemente eines übergeordneten Levels entstehen durch Interaktionen von Elementen untergeordneter Level.
Zusammensetzung der höheren Level aus den Objekten unterliegender Level ändert sich mit der Zeit.
Elemente eines übergeordneten Levels stellen die reine Ansammlung von Objekten untergeordneter Level dar.
Sowohl übergeordnete als auch untergeordnete Level folgen denselben Regeln.

15 Welcher logische Operator lässt sich nicht mit einem einschichtigen Perzeptron umsetzen?

inklusives Oder
Nicht
exklusives Oder
Und

16 Welche Probleme und Schwierigkeiten treten beim Reinforcement-Lernen auf?

Das Lernprinzip kommt in der Realität nicht vor.
Der Lernvorgang findet gänzlich ungesteuert statt.
Reinforcement-Lernen dauert oft länger als überwachtes Lernen.
Belohnungen treten oft zeitversetzt zu Handlungen auf.

17 Welche Art des Lernens lässt sich mit Hebb’schem Lernen erklären?

Operantes Konditionieren
Klassisches Konditionieren
Habituation
Instruktionslernen

18 Die kognitive Architektur ACT-R besteht aus folgenden Modulen:

Ziel Modul
Prozedurales Modul
Deklaratives Modul
Introspektives Modul
Manuelles Modul

19 Welche Lernregel ähnelt der klassischen Perzeptron-Lernregel am stärksten?

Hebb’sches Lernen
Deltaregel
Competitive Learning
Backpropagation

20 Welches dieser Konzepte ist kein zentraler Baustein dynamischer neuronaler Felder?

kontinuierliche topologische Repräsentationen
Entwicklung von Aktivierung über die Zeit
Lernen durch Änderung des Interaktionskernels
laterale Inhibition

21 Was hat beim Hebb’schen Lernen keinen Einfluss auf die Gewichtsveränderung?

Aktivierung des Outputknotens
Fehlerterm
Lernrate
Aktivierung des Inputknotens

22 Um welche Form des Lernens handelt es sich, wenn ein Kind versucht, das richtige Puzzleteil zu finden, indem es verschiedene Teile ausprobiert, um zu sehen, ob sie passen?

unsupervised learning
supervised learning
error-driven learning
reinforcement learning




23