Aufgaben - Synthetische Modelle

Aus eLearning - Methoden der Psychologie - TU Dresden
Zur Navigation springen Zur Suche springen

Der folgenden Bereich enthält Fragen zu synthetischen und explanativen Modellen. Alle Fragen sind Multiple Choice Fragen, d.h. es können immer mehrere Antworten richtig sein. Klicken Sie zur Beantwortung einer Frage die korrekten Antwortmöglichkeiten an. Um Ihre Ergebnisse auszuwerten, wählen Sie bitte den Button "Speichern" am unteren Ende der Seite.

Für jede vollständig richtig beantwortete Frage erhalten Sie einen Punkt. Für falsche beantwortete Fragen werden Ihnen keine Punkte abgezogen. Sie können diese Einstellung jedoch beliebig verändern. Ihre Gesamtpunktzahl finden Sie am unteren Seitenende.


  

1 Welche Aussagen zum Verarbeitungszyklus in Soar sind richtig?

Wenn der Arbeitsspeicher bestimmte Bedingungen von Produktionsregeln erfüllt, schlagen diese die Anwendung bestimmter Operatoren vor.
Wenn kein beim Evaluationsprozess kein bester Operator gefunden werden kann, kehrt das System in den Ausgangszustand zurück.
Bei jeder Bewältigung eines Unterziels wird eine neue Regel erstellt.

2 Welche Aussagen zur Funktionsweise von kognitiven Architekturen sind richtig?

Man kann damit Daten wie Reaktionslatenzen und Genauigkeit simulieren.
Die Modelle innerhalb von kognitiven Architekturen sind nicht generalisierbar.
Kognitive Architekturen funktionieren ähnlich wie eine Programmiersprache.
Anwender können ihre Experimente in Form von Programmen in die Architekturen einbauen und testen.

3 Über welche dieser Fähigkeiten verfügen neuronale Netze (sowohl künstliche als auch biologische)?

lokale, ortsspezifische Speicherung von Mustern
Lernen und Selbstorganisation
Toleranz gegenüber Fehlern im Input
Generalisierung von Bekanntem auf Unbekanntes

4 Wodurch wird die Aktivierung der Knoten in dynamischen Feldern beeinflusst?

externer Input
Ruhepotential
Aktivierung der Nachbarknoten
Aktivierung des betreffenden Knotens selbst

5 Welche Aussagen zu den Funktionsbausteinen von Soar sind richtig?

„Chunking“ bezeichnet die Gruppierung von Operatoren in eine funktionale Kategorie.
Produktionsregeln können Operatoren vorschlagen und bewerten.
Der Regelspeicher greift auf das im Arbeitsspeicher kodierte prozedurale und Faktenwissen zurück.

6 Welche der folgenden Aussagen zur Agentenbasierten Modellierung treffen zu?

Agentenbasierte Modellierung kann keine Erklärungsansätze für soziale Phänomene wie z.B. Massenpanik bieten.
Agentenbasierte Modellierung nutzt vieler kleine autonome Einheiten, welche keine Entscheidungs- oder Handlungsmöglichkeiten besitzen.
Agentenbasierte Modellierung wird zur Untersuchung komplexer Systeme verwendet.
Agenten bringen durch Interaktion miteinander ein bestimmtes Systemverhalten hervor.

7 Wovon ist die Gewichtsveränderung bei der Deltaregel abhängig?

Lernrate
Aktivierung des Inputknotens
Belohnungssignal
Differenz zwischen gewünschtem und beobachtetem Output

8 Welche dieser Lernregeln gehören zum überwachten Lernen?

Backpropagation-Regel
Competitive Learning
Hebb’sche Lernregel
Delta-Regel

9 Was versteht man unter Populationsvektorkodierung bei dynamischen neuronalen Feldern?

Eine Population von Knoten kodiert gemeinsam eine Eigenschaftsdimension.
Ein Knoten kodiert eine Population von Eigenschaften.
Jeder Knoten hat eine „präferierte“ Eigenschaftsausprägung.
Jeder Knoten hat eine „präferierte“ Eigenschaftsdimension.

10 Welche der folgenden Netztypen besitzen keine Rückkopplungen?

Kohonen-Netze
Dynamische neuronale Felder
Perzeptron
Attraktorennetze

11 Synthetische und Explanative Modelle werden zur Modellierung komplexer Prozesse verwendet. Der Mensch stellt ein überaus komplexes System dar, dessen Verhalten mittels gesonderter Modelle aus verschiedenen Perspektiven analysiert werden kann. Welche Aussagen über diese verschiedenen Betrachtungsebenen sind zutreffend?

Sozialorientierte Modelle beschäftigen sich mit der Entstehung menschlichen Verhaltens durch das Zusammenspiel von Personen.
Sozialorientierte Modelle untersuchen Intra-Agenten-Prozesse.
Individuumsorientierte Modelle untersuchen Inter-Agenten-Prozesse.
Individuumsorientierte Modelle beschäftigen sich mit der Entstehung menschlichen Verhaltens durch das Zusammenspiel interner Prozesse.

12 Welche der folgenden Merkmale besitzen Synthetische und Explanative Modelle?

Entwicklung erfolgt durch Abstraktion über Daten bestimmter Fälle oder prinzipienorientiert ohne Daten
Modelle dienen der Generalisierung und Theoriebildung
Modelle überraschen selten, da ihre Komplexität durch die Modellierung angemessen reduziert werden muss
Modelle verhalten sich, d.h. sie repräsentieren nicht nur abstrakte Zahlenketten, sondern können in eine Verbindung zur (virtuellen) Außenwelt gestellt werden

13 Welche Aussagen über Attraktorennetze sind zutreffend?

Attraktoren sind stabile Werte, zu denen die Gewichte immer wieder zurückkehren.
Die Knoten einer Schicht besitzen laterale Rückkopplungen.
Das Lernen erfolgt nach dem „Winner-takes-all“-Prinzip, sodass jeweils nur die Gewichte des am stärksten aktiven Knotens aktualisiert werden.
Durch das Lernen bilden sich stabile Koaktivierungsmuster von Knoten.

14 Welche Aussagen zum Konzept der emergenten (oder auch aufsteigenden) Level, welches bei der Modellierung zu beachten ist, treffen zu?

Zusammensetzung der höheren Level aus den Objekten unterliegender Level ändert sich mit der Zeit.
Elemente eines übergeordneten Levels entstehen durch Interaktionen von Elementen untergeordneter Level.
Sowohl übergeordnete als auch untergeordnete Level folgen denselben Regeln.
Elemente eines übergeordneten Levels stellen die reine Ansammlung von Objekten untergeordneter Level dar.

15 Welcher logische Operator lässt sich nicht mit einem einschichtigen Perzeptron umsetzen?

Und
exklusives Oder
Nicht
inklusives Oder

16 Welche Probleme und Schwierigkeiten treten beim Reinforcement-Lernen auf?

Belohnungen treten oft zeitversetzt zu Handlungen auf.
Der Lernvorgang findet gänzlich ungesteuert statt.
Reinforcement-Lernen dauert oft länger als überwachtes Lernen.
Das Lernprinzip kommt in der Realität nicht vor.

17 Welche Art des Lernens lässt sich mit Hebb’schem Lernen erklären?

Habituation
Operantes Konditionieren
Instruktionslernen
Klassisches Konditionieren

18 Die kognitive Architektur ACT-R besteht aus folgenden Modulen:

Introspektives Modul
Prozedurales Modul
Deklaratives Modul
Manuelles Modul
Ziel Modul

19 Welche Lernregel ähnelt der klassischen Perzeptron-Lernregel am stärksten?

Deltaregel
Backpropagation
Hebb’sches Lernen
Competitive Learning

20 Welches dieser Konzepte ist kein zentraler Baustein dynamischer neuronaler Felder?

Entwicklung von Aktivierung über die Zeit
kontinuierliche topologische Repräsentationen
Lernen durch Änderung des Interaktionskernels
laterale Inhibition

21 Was hat beim Hebb’schen Lernen keinen Einfluss auf die Gewichtsveränderung?

Lernrate
Aktivierung des Inputknotens
Fehlerterm
Aktivierung des Outputknotens

22 Um welche Form des Lernens handelt es sich, wenn ein Kind versucht, das richtige Puzzleteil zu finden, indem es verschiedene Teile ausprobiert, um zu sehen, ob sie passen?

reinforcement learning
unsupervised learning
error-driven learning
supervised learning




23