Aufgaben - Fitting & Modellvergleich

Aus eLearning - Methoden der Psychologie - TU Dresden
Zur Navigation springen Zur Suche springen

Der folgenden Bereich enthält Fragen zum Prozess des Fittings und dem Vergleich von Modellen. Alle Fragen sind Multiple Choice Fragen, d.h. es können immer mehrere Antworten richtig sein. Klicken Sie zur Beantwortung einer Frage die korrekten Antwortmöglichkeiten an. Um Ihre Ergebnisse auszuwerten, wählen Sie bitte den Button "Speichern" am unteren Ende der Seite.

Für jede vollständig richtig beantwortete Frage erhalten Sie einen Punkt. Für falsche beantwortete Fragen werden Ihnen keine Punkte abgezogen. Sie können diese Einstellung jedoch beliebig verändern. Ihre Gesamtpunktzahl finden Sie am unteren Seitenende.


  

1 Welche Vorteile bringt die Log-Likelihood-Methode mit sich?

Sehr kleine Werte des Fehlermaßes werden vermieden.
Die Passung des Modells zu den Daten wird auf Werte zwischen 0 und 1 normiert.
Der Rechenaufwand verringert sich durch die Vermeidung von Multiplikation.
Das Fehlermaß wird besser interpretierbar.

2 Im Rahmen eines quantitativen Modellvergleichs werden häufig Vergleichsmaße berechnet. Welche Aussagen über Vergleichsmaße sind wahr?

Zwei Modelle, welche gleich gut in der Lage sind, vorliegende empirische Daten zu beschreiben, können in Abhängigkeit ihrer Komplexität unterschiedliche Vergleichsmaßwerte besitzen. Je komplexer das Modell ist, desto höher sind diese Werte.
Vergleichsmaße berücksichtigen neben der Vorhersagefähigkeit des Modells die Anzahl der verwendeten Parameter.
Vergleichsmaße berücksichtigen neben der Vorhersagefähigkeit des Modells die Komplexität der verwendeten Berechnungsvorschrift.
Zwei Modelle, welche gleich gut in der Lage sind, vorliegende empirische Daten zu beschreiben, können in Abhängigkeit ihrer Komplexität unterschiedliche Vergleichsmaßwerte besitzen. Je weniger komplex das Modell ist, desto höher sind diese Werte.

3 Welche Voraussetzungen müssen für die Anwendung der Maximum-Likelihood-Methode erfüllt sein?

Die Stichprobe muss möglichst groß sein.
Die Daten müssen eine geringe Streuung haben.
Die Datenpunkte müssen statistisch voneinander abhängig sein.
Die Verteilung der Daten muss bekannt sein.

4 Welche Folgen können aus der Verwendung unterschiedlich großer Parameteranzahlen beim Prozess des Fittings resultieren?

viele freie Parameter führen zu „Overfitting“
eine hohe Parameteranzahl kann dazu führen, dass das Modell nur unzureichend zur Beschreibung der vorliegenden Daten geeignet ist
eine zu geringe Parameteranzahl führt zu „Underfitting“
eine hohe Parameteranzahl kann dazu führen, dass das Modell nur schlecht zur korrekten Vorhersage neuer Daten in der Lage ist

5 Welche Aussagen über den Einsatz von quantitativen und qualitativen Modellvergleichen treffen zu?

Ein qualitativer Modellvergleich untersucht die Übereinstimmung der Datenmuster zwischen empirischen und simulierten Daten.
Ein quantitativer Modellvergleich sollte eingesetzt werden, wenn stärkeres Interesse am relativen Verhältnis der empirischen und simulierten Daten besteht.
Ein qualitativer Modellvergleich sollte eingesetzt werden, wenn es sich beim Untersuchungsgegenstand um ein sehr komplexes Phänomen handelt.
Ein qualitativer Modellvergleich ermittelt den Fit zwischen den empirisch erhobenen und den basierend auf dem Modell simulierten Daten zur Bestimmung der Vorhersagegüte des Modells.

6 Welche Methoden werden bei der Durchführung eines qualitativen Modellvergleichs angewandt?

„Measure of Surprise Methode“
Untersuchung des Fits zwischen empirisch erhobenen und simulierten Daten
Untersuchung der Übereinstimmung des Modells mit bestehenden Theorien
Untersuchung der Übereinstimmung von Datenmustern

7 Welche Probleme hat das Simulated Annealing?

Es müssen viele Punkte der Fehlerfunktion gleichzeitig evaluiert werden.
Ein gefundenes Optimum kann im Verlauf wieder verloren gehen.
Lokale Minima können nicht verlassen werden.
Optima, die weit weg vom Startpunkt liegen, können übersehen werden.

8 Wie wird im Simplexverfahren nach Nelder und Mead vorgegangen, wenn der reflektierte Punkt besser ist als das bisherige Minimum?

9