Vergleichsmaße: Unterschied zwischen den Versionen

Aus eLearning - Methoden der Psychologie - TU Dresden
Zur Navigation springen Zur Suche springen
(Die Seite wurde neu angelegt: „{{Nav|Navigation|Kognitive Modellierung|Hauptseite}} Artikelinhalt“)
 
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
{{Nav|Navigation|Kognitive Modellierung|Hauptseite}}
{{Nav|Navigation|Kognitive Modellierung|Hauptseite}}
Artikelinhalt
Im Rahmen eines quantitativen Modellvergleichs wird die Balance zwischen möglichst geringer Parameteranzahl und guter Vorhersagefähigkeit verschiedener Modelle untersucht, um die Wahl eines optimalen Modells zu ermöglichen. Obwohl kein einheitliches Kriterium für diese Entscheidung existiert, kann die Berechnung von ''Vergleichsmaßen'' (auch als Informationskriterien bezeichnet) als Orientierung dienen.
Diese Kriterien berücksichtigen nicht nur den Fit der Modelle an die empirischen Daten, sondern beachten zusätzlich die Anzahl der verwendeten Parameter. Dies ist wichtig, damit komplexere Modelle nicht grundsätzlich als besser eingestuft werden, weil sie exakter an die aktuell vorliegenden Daten angepasst werden können. Das mit Hilfe der Vergleichsmaße ermittelte optimale Modell soll dabei das bestmögliche Verhältnis zwischen hoher Vorhersagefähigkeit und geringer Komplexität besitzen.
Zu den am häufigsten verwendeten Vergleichsmaßen gehören das Akaike-Information-Criterion (AIC) und das Bayesian-Information-Criterion (BIC).

Version vom 11. August 2018, 21:41 Uhr

Im Rahmen eines quantitativen Modellvergleichs wird die Balance zwischen möglichst geringer Parameteranzahl und guter Vorhersagefähigkeit verschiedener Modelle untersucht, um die Wahl eines optimalen Modells zu ermöglichen. Obwohl kein einheitliches Kriterium für diese Entscheidung existiert, kann die Berechnung von Vergleichsmaßen (auch als Informationskriterien bezeichnet) als Orientierung dienen. Diese Kriterien berücksichtigen nicht nur den Fit der Modelle an die empirischen Daten, sondern beachten zusätzlich die Anzahl der verwendeten Parameter. Dies ist wichtig, damit komplexere Modelle nicht grundsätzlich als besser eingestuft werden, weil sie exakter an die aktuell vorliegenden Daten angepasst werden können. Das mit Hilfe der Vergleichsmaße ermittelte optimale Modell soll dabei das bestmögliche Verhältnis zwischen hoher Vorhersagefähigkeit und geringer Komplexität besitzen. Zu den am häufigsten verwendeten Vergleichsmaßen gehören das Akaike-Information-Criterion (AIC) und das Bayesian-Information-Criterion (BIC).