General Linear Model: Unterschied zwischen den Versionen

Aus eLearning - Methoden der Psychologie - TU Dresden
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 6: Zeile 6:
Formal lässt sich das GLM durch die folgende Gleichung beschreiben:
Formal lässt sich das GLM durch die folgende Gleichung beschreiben:


: [[Datei:GLM_1.png]]
:: [[Datei:GLM_1.png]]


Y... Vektor der Kriteriumsvariablen
:: Y...     Vektor der Kriteriumsvariablen


X... Matrix der Prädiktoren (= Designmatrix)
:: X...     Matrix der Prädiktoren (= Designmatrix)


b... Vektor der Gewichte aller Prädiktoren
:: b...     Vektor der Gewichte aller Prädiktoren


e... Vektor der Residuen
:: e...     Vektor der Residuen


Die gleichzeitige Betrachtung der Werte mehrerer Beobachtungseinheiten (z.B. Individuen) führt zu einem linearen Gleichungssystem, welches mit Hilfe eines Minimierungsprinzips (dem Prinzip der Kleinsten Quadrate) die Schätzung der gesuchten Prädiktorgewichte b ermöglicht. Die Modellparameter werden dabei so gewählt, dass die Summe der quadrierten Fehler (= Abweichungen der beobachteten Y-Werte von den durch das Modell vorhergesagten Kriteriumswerten Xb) ein Minimum erreicht:
Die gleichzeitige Betrachtung der Werte mehrerer Beobachtungseinheiten (z.B. Individuen) führt zu einem linearen Gleichungssystem, welches mit Hilfe eines Minimierungsprinzips (dem Prinzip der Kleinsten Quadrate) die Schätzung der gesuchten Prädiktorgewichte b ermöglicht. Die Modellparameter werden dabei so gewählt, dass die Summe der quadrierten Fehler (= Abweichungen der beobachteten Y-Werte von den durch das Modell vorhergesagten Kriteriumswerten Xb) ein Minimum erreicht:


: [[Datei:GLM_2.png]]
:: [[Datei:GLM_2.png]]


: n... Anzahl an Individuen
:: n... Anzahl an Individuen




Als beste Schätzung für b erhält man durch Formelumstellung:
Als beste Schätzung für b erhält man durch Formelumstellung:


: [[Datei:GLM_3.png]]
:: [[Datei:GLM_3.png]]


[[Datei:GLM_20.PNG]]
:: [[Datei:GLM_20.PNG]]




Zeile 36: Zeile 36:
Spezialfälle des Modells sind der t-Test, die Varianzanalyse, Korrelations- und Regressionsrechnungen sowie Kovarianzanalysen. Die Einteilung dieser Spezialfälle wird anhand der Anzahl von Prädiktor- und Kriteriumsvariablen und dem Skalenniveau der Variablen vorgenommen.
Spezialfälle des Modells sind der t-Test, die Varianzanalyse, Korrelations- und Regressionsrechnungen sowie Kovarianzanalysen. Die Einteilung dieser Spezialfälle wird anhand der Anzahl von Prädiktor- und Kriteriumsvariablen und dem Skalenniveau der Variablen vorgenommen.


''Folgende Darstellung zeigt den t-Test als Spezialfall des GLM:''
 
'''''Folgende Darstellung zeigt den t-Test als Spezialfall des GLM:'''''


Das GLM stellt das übergeordnete Modell des t-Test dar. Es prüft z.B. den linearen Einfluss einer Prädiktorvariable auf eine Kriteriumsvariable mithilfe der folgenden Formel:
Das GLM stellt das übergeordnete Modell des t-Test dar. Es prüft z.B. den linearen Einfluss einer Prädiktorvariable auf eine Kriteriumsvariable mithilfe der folgenden Formel:


[[Datei:GLM_22.PNG]]
:: [[Datei:GLM_22.PNG]]


Einen speziellen Fall stellt der Vergleich zweier Gruppen dar. Dieser Gruppenvergleich erfolgt üblicherweise mittels eines t-Tests. Dieser stellt die Frage, ob der Unterschied zwischen zwei Gruppen bedeutsam ist. Die Gruppenzugehörigkeit kann dabei als Prädiktor für die untersuchte Kriteriumsvariable, welche zwischen beiden Gruppen verglichen werden soll, betrachtet werden.
Einen speziellen Fall stellt der Vergleich zweier Gruppen dar. Dieser Gruppenvergleich erfolgt üblicherweise mittels eines t-Tests. Dieser stellt die Frage, ob der Unterschied zwischen zwei Gruppen bedeutsam ist. Die Gruppenzugehörigkeit kann dabei als Prädiktor für die untersuchte Kriteriumsvariable, welche zwischen beiden Gruppen verglichen werden soll, betrachtet werden.
Zeile 46: Zeile 47:
Die Prüfgröße des t-Test wird dabei folgendermaßen ermittelt:
Die Prüfgröße des t-Test wird dabei folgendermaßen ermittelt:


Prüfgröße  [[Datei:GLM_12.png]]   
:: Prüfgröße  [[Datei:GLM_12.png]]   


[[Datei:GLM_23.PNG]]
:: [[Datei:GLM_23.PNG]]


Es fließen somit die Mittelwerte beider Gruppen in die Berechnung der Prüfgröße ein. Diese Mittelwertdifferenz kann auch in der Formel des GLM abgebildet werden.  
Es fließen somit die Mittelwerte beider Gruppen in die Berechnung der Prüfgröße ein. Diese Mittelwertdifferenz kann auch in der Formel des GLM abgebildet werden.  
Zeile 55: Zeile 56:


Es gilt:
Es gilt:
{|
::{|
| [[Datei:GLM_16.png]]
| [[Datei:GLM_16.png]]
|  
|  
Zeile 69: Zeile 70:
|}
|}


Daraus folgt: [[Datei:GLM_19.png]]    mit  
Daraus folgt:
:: [[Datei:GLM_19.png]]    mit  
 
::::g = 0 für Mittelwert der Gruppe 1 und


g = 0 für Mittelwert der Gruppe 1 und
::::g = 1 für Mittelwert der Gruppe 2
g = 1 für Mittelwert der Gruppe 2

Version vom 25. August 2018, 21:36 Uhr

Das General Linear Model (dt. Allgemeines Lineares Modell, ALM) ist ein grundlegendes Modell der Statistik, auf welchem eine Vielzahl häufig eingesetzter Verfahren, wie z.B. die Varianzanalyse, die Regressionsanalyse und viele weitere Verfahren basieren. Sie alle stellen Spezialfälle des GLM dar.

Es ermöglicht die Beschreibung der Ausprägungen einer oder mehrerer Kriteriumsvariablen (= abhängiger Variablen) durch eine Linearkombination (gewichtete Summe) von Prädiktorvariablen (= unabhängiger Variablen) und einer Fehlerkomponente (Residuum). Die unabhängigen Variablen bilden den Ausgangspunkt für die Vorhersage und werden daher Prädiktoren genannt. Die abhängige Variable, dessen Ausprägung man vorhersagen möchte, wird in der Psychologie als Kriteriumsvariable bezeichnet. Grundvoraussetzung für die Anwendung des Modells ist die Annahme, dass ein linearer Zusammenhang zwischen den zu erklärenden Beobachtungsdaten und den bekannten Einflussvariablen (Prädiktoren / Regressoren) besteht.

Formal lässt sich das GLM durch die folgende Gleichung beschreiben:

GLM 1.png
Y... Vektor der Kriteriumsvariablen
X... Matrix der Prädiktoren (= Designmatrix)
b... Vektor der Gewichte aller Prädiktoren
e... Vektor der Residuen

Die gleichzeitige Betrachtung der Werte mehrerer Beobachtungseinheiten (z.B. Individuen) führt zu einem linearen Gleichungssystem, welches mit Hilfe eines Minimierungsprinzips (dem Prinzip der Kleinsten Quadrate) die Schätzung der gesuchten Prädiktorgewichte b ermöglicht. Die Modellparameter werden dabei so gewählt, dass die Summe der quadrierten Fehler (= Abweichungen der beobachteten Y-Werte von den durch das Modell vorhergesagten Kriteriumswerten Xb) ein Minimum erreicht:

GLM 2.png
n... Anzahl an Individuen


Als beste Schätzung für b erhält man durch Formelumstellung:

GLM 3.png
GLM 20.PNG


Sofern die Inverse von GLM 21.png existiert, kann diese Gleichung immer gelöst werden.

Ein Vergleich der beobachteten Daten und der Linearkombination aller verwendeten Prädiktoren ermöglicht die Einschätzung der Güte des linearen Zusammenhangs. Dazu verwendet man üblicherweise das Bestimmtheitsmaß R², welches den Anteil der Variabilität im Modell angibt, der durch die ausgewählten Prädiktoren erklärt werden kann. Bei mehreren Prädiktoren wird dabei oft eine korrigierte Form des Bestimmtheitsmaßes gewählt, welche die Anzahl der Prädiktoren bestrafend mit verrechnet.

Spezialfälle des Modells sind der t-Test, die Varianzanalyse, Korrelations- und Regressionsrechnungen sowie Kovarianzanalysen. Die Einteilung dieser Spezialfälle wird anhand der Anzahl von Prädiktor- und Kriteriumsvariablen und dem Skalenniveau der Variablen vorgenommen.


Folgende Darstellung zeigt den t-Test als Spezialfall des GLM:

Das GLM stellt das übergeordnete Modell des t-Test dar. Es prüft z.B. den linearen Einfluss einer Prädiktorvariable auf eine Kriteriumsvariable mithilfe der folgenden Formel:

GLM 22.PNG

Einen speziellen Fall stellt der Vergleich zweier Gruppen dar. Dieser Gruppenvergleich erfolgt üblicherweise mittels eines t-Tests. Dieser stellt die Frage, ob der Unterschied zwischen zwei Gruppen bedeutsam ist. Die Gruppenzugehörigkeit kann dabei als Prädiktor für die untersuchte Kriteriumsvariable, welche zwischen beiden Gruppen verglichen werden soll, betrachtet werden.

Die Prüfgröße des t-Test wird dabei folgendermaßen ermittelt:

Prüfgröße GLM 12.png
GLM 23.PNG

Es fließen somit die Mittelwerte beider Gruppen in die Berechnung der Prüfgröße ein. Diese Mittelwertdifferenz kann auch in der Formel des GLM abgebildet werden.

Die Verwendung der Formel des GLM würde wie folgt aussehen:

Es gilt:

GLM 16.png
GLM 17.png - Prädiktorvariable mit zwei Ausprägungen - bildet Gruppenzugehörigkeit ab
GLM 18.png - Differenz der Gruppenmittelwerte

Daraus folgt:

GLM 19.png mit
g = 0 für Mittelwert der Gruppe 1 und
g = 1 für Mittelwert der Gruppe 2